IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29396-0.html
   My bibliography  Save this article

Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence

Author

Listed:
  • Yuan Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dian Niu

    (Chinese Academy of Sciences)

  • Guanghui Ouyang

    (Chinese Academy of Sciences)

  • Minghua Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The canonical double helical π-stacked array of base pairs within DNA interior has inspired the interest in supramolecular double helical architectures with advanced electronic, magnetic and optical functions. Here, we report a selective-recognized and chirality-matched co-assembly strategy for the fabrication of fluorescent π-amino acids into double helical π-aggregates, which show exceptional strong circularly polarized luminescence (CPL). The single crystal structure of the optimal combination of co-assemblies shows that the double-stranded helical organization of these π-amino acids is cooperatively assisted by both CH-π and hydrogen-bond arrays with chirality match. The well-defined spatial arrangement of the π-chromophores could effectively suppress the non-radiative decay pathways and facilitate chiral exciton couplings, leading to superior CPL with a strong figure of merit (glum = 0.14 and QY = 0.76). Our findings might open a new door for developing DNA-inspired chiroptical materials with prominent properties by enantioselective co-assembly initiated double helical π-aggregation.

Suggested Citation

  • Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29396-0
    DOI: 10.1038/s41467-022-29396-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29396-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29396-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anton Kuzyk & Robert Schreiber & Zhiyuan Fan & Günther Pardatscher & Eva-Maria Roller & Alexander Högele & Friedrich C. Simmel & Alexander O. Govorov & Tim Liedl, 2012. "DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response," Nature, Nature, vol. 483(7389), pages 311-314, March.
    2. Dongxue Han & Xuefeng Yang & Jianlei Han & Jin Zhou & Tifeng Jiao & Pengfei Duan, 2020. "Sequentially amplified circularly polarized ultraviolet luminescence for enantioselective photopolymerization," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Qiuhong Cheng & Aiyou Hao & Pengyao Xing, 2021. "A chemosensor-based chiral coassembly with switchable circularly polarized luminescence," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Keisuke Aratsu & Rika Takeya & Brian R. Pauw & Martin J. Hollamby & Yuichi Kitamoto & Nobutaka Shimizu & Hideaki Takagi & Rie Haruki & Shin-ichi Adachi & Shiki Yagai, 2020. "Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. Yingwei Li & Meng Zhou & Yongbo Song & Tatsuya Higaki & He Wang & Rongchao Jin, 2021. "Double-helical assembly of heterodimeric nanoclusters into supercrystals," Nature, Nature, vol. 594(7863), pages 380-384, June.
    6. Xiaosheng Yan & Kunshan Zou & Jinlian Cao & Xiaorui Li & Zhixing Zhao & Zhao Li & Anan Wu & Wanzhen Liang & Yirong Mo & Yunbao Jiang, 2019. "Single-handed supramolecular double helix of homochiral bis(N-amidothiourea) supported by double crossed C−I···S halogen bonds," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan Xia & Jianpei Xing & Di Peng & Shiyu Ji & Jun Zha & Nan Yan & Yan Su & Xue Jiang & Zhi Zeng & Jijun Zhao & Zhikun Wu, 2022. "Assembly-induced spin transfer and distance-dependent spin coupling in atomically precise AgCu nanoclusters," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Liang Qiao & Nia Pollard & Ravithree D. Senanayake & Zhi Yang & Minjung Kim & Arzeena S. Ali & Minh Tam Hoang & Nan Yao & Yimo Han & Rigoberto Hernandez & Andre Z. Clayborne & Matthew R. Jones, 2023. "Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Jun Guo & Yulong Duan & Yunling Jia & Zelong Zhao & Xiaoqing Gao & Pai Liu & Fangfang Li & Hongli Chen & Yutong Ye & Yujiao Liu & Meiting Zhao & Zhiyong Tang & Yi Liu, 2024. "Biomimetic chiral hydrogen-bonded organic-inorganic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Lei Xu & Li Zhou & Yan-Xiang Li & Run-Tan Gao & Zheng Chen & Na Liu & Zong-Quan Wu, 2023. "Thermo-responsive chiral micelles as recyclable organocatalyst for asymmetric Rauhut-Currier reaction in water," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xiaosheng Yan & Jinlian Cao & Huan Luo & Zhao Li & Zexing Cao & Yirong Mo & Yun-Bao Jiang, 2024. "Heterochiral coupling to bilateral β-turn structured azapeptides bearing two remote chiral centers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Zhiyuan Ding & Si Gao & Weina Fang & Chen Huang & Liqi Zhou & Xudong Pei & Xiaoguo Liu & Xiaoqing Pan & Chunhai Fan & Angus I. Kirkland & Peng Wang, 2022. "Three-dimensional electron ptychography of organic–inorganic hybrid nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zhiwei Yang & Yanze Wei & Jingjing Wei & Zhijie Yang, 2022. "Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Debashis Mondal & Manzoor Ahmad & Bijoy Dey & Abhishek Mondal & Pinaki Talukdar, 2022. "Formation of supramolecular channels by reversible unwinding-rewinding of bis(indole) double helix via ion coordination," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Xue-Jing Zhai & Meng-Yu Luo & Xi-Ming Luo & Xi-Yan Dong & Yubing Si & Chong Zhang & Zhen Han & Runping Han & Shuang-Quan Zang & Thomas C. W. Mak, 2024. "Hierarchical assembly of Ag40 nanowheel ranging from building blocks to diverse superstructure regulation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Xiaoyu Chen & Renlong Zhu & Baicheng Zhang & Xiaolong Zhang & Aoyuan Cheng & Hongping Liu & Ruiying Gao & Xuepeng Zhang & Biao Chen & Shuji Ye & Jun Jiang & Guoqing Zhang, 2024. "Rapid room-temperature phosphorescence chiral recognition of natural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Yongbo Song & Yingwei Li & Meng Zhou & Hao Li & Tingting Xu & Chuanjun Zhou & Feng Ke & Dayujia Huo & Yan Wan & Jialong Jie & Wen Wu Xu & Manzhou Zhu & Rongchao Jin, 2022. "Atomic structure of a seed-sized gold nanoprism," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Li-Juan Liu & Fahri Alkan & Shengli Zhuang & Dongyi Liu & Tehseen Nawaz & Jun Guo & Xiaozhou Luo & Jian He, 2023. "Atomically precise gold nanoclusters at the molecular-to-metallic transition with intrinsic chirality from surface layers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Jeroen F. Dyck & Jonathan R. Burns & Kyle I. P. Huray & Albert Konijnenberg & Stefan Howorka & Frank Sobott, 2022. "Sizing up DNA nanostructure assembly with native mass spectrometry and ion mobility," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Yajun Fang & Yuntian Yang & Rui Xu & Mingyun Liang & Qi Mou & Shuixia Chen & Jehan Kim & Long Yi Jin & Myongsoo Lee & Zhegang Huang, 2023. "Hierarchical porous photosensitizers with efficient photooxidation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Hao Li & Tian Wang & Jiaojiao Han & Ying Xu & Xi Kang & Xiaosong Li & Manzhou Zhu, 2024. "Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Huacheng Li & Xin Xu & Rongcheng Guan & Artur Movsesyan & Zhenni Lu & Qiliang Xu & Ziyun Jiang & Yurong Yang & Majid Khan & Jin Wen & Hongwei Wu & Santiago Moya & Gil Markovich & Huatian Hu & Zhiming , 2024. "Collective chiroptical activity through the interplay of excitonic and charge-transfer effects in localized plasmonic fields," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Zhan-Hua Zhao & Bao-Liang Han & Hai-Feng Su & Qi-Lin Guo & Wen-Xin Wang & Jing-Qiu Zhuo & Yong-Nan Guo & Jia-Long Liu & Geng-Geng Luo & Ping Cui & Di Sun, 2024. "Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Nam Heon Cho & Young Bi Kim & Yoon Young Lee & Sang Won Im & Ryeong Myeong Kim & Jeong Won Kim & Seok Daniel Namgung & Hye-Eun Lee & Hyeohn Kim & Jeong Hyun Han & Hye Won Chung & Yoon Ho Lee & Jeong W, 2022. "Adenine oligomer directed synthesis of chiral gold nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Yuan Zhong & Jiangwei Zhang & Tingting Li & Wenwu Xu & Qiaofeng Yao & Min Lu & Xue Bai & Zhennan Wu & Jianping Xie & Yu Zhang, 2023. "Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29396-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.