IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49735-7.html
   My bibliography  Save this article

Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement

Author

Listed:
  • Hao Li

    (Anhui University
    Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
    Anhui University
    Anhui Jianzhu University)

  • Tian Wang

    (University of Washington)

  • Jiaojiao Han

    (Anhui University
    Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
    Anhui University)

  • Ying Xu

    (Anhui University
    Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
    Anhui University)

  • Xi Kang

    (Anhui University
    Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
    Anhui University)

  • Xiaosong Li

    (University of Washington)

  • Manzhou Zhu

    (Anhui University
    Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
    Anhui University)

Abstract

Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4 system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4 cluster and the emission of the Cu8(p-MBT)8(PPh3)4 cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.

Suggested Citation

  • Hao Li & Tian Wang & Jiaojiao Han & Ying Xu & Xi Kang & Xiaosong Li & Manzhou Zhu, 2024. "Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49735-7
    DOI: 10.1038/s41467-024-49735-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49735-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49735-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juanzhu Yan & Sami Malola & Chengyi Hu & Jian Peng & Birger Dittrich & Boon K. Teo & Hannu Häkkinen & Lansun Zheng & Nanfeng Zheng, 2018. "Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Anil Desireddy & Brian E. Conn & Jingshu Guo & Bokwon Yoon & Robert N. Barnett & Bradley M. Monahan & Kristin Kirschbaum & Wendell P. Griffith & Robert L. Whetten & Uzi Landman & Terry P. Bigioni, 2013. "Ultrastable silver nanoparticles," Nature, Nature, vol. 501(7467), pages 399-402, September.
    3. Yingwei Li & Meng Zhou & Yongbo Song & Tatsuya Higaki & He Wang & Rongchao Jin, 2021. "Double-helical assembly of heterodimeric nanoclusters into supercrystals," Nature, Nature, vol. 594(7863), pages 380-384, June.
    4. Danyu Liu & Wenjun Du & Shuang Chen & Xi Kang & Along Chen & Yaru Zhen & Shan Jin & Daqiao Hu & Shuxin Wang & Manzhou Zhu, 2021. "Interdependence between nanoclusters AuAg24 and Au2Ag41," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Zhong & Jiangwei Zhang & Tingting Li & Wenwu Xu & Qiaofeng Yao & Min Lu & Xue Bai & Zhennan Wu & Jianping Xie & Yu Zhang, 2023. "Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xi Kang & Xiao Wei & Xiaokang Liu & Sicong Wang & Tao Yao & Shuxin Wang & Manzhou Zhu, 2021. "A reasonable approach for the generation of hollow icosahedral kernels in metal nanoclusters," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.
    4. Liang Qiao & Nia Pollard & Ravithree D. Senanayake & Zhi Yang & Minjung Kim & Arzeena S. Ali & Minh Tam Hoang & Nan Yao & Yimo Han & Rigoberto Hernandez & Andre Z. Clayborne & Matthew R. Jones, 2023. "Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Jun Guo & Yulong Duan & Yunling Jia & Zelong Zhao & Xiaoqing Gao & Pai Liu & Fangfang Li & Hongli Chen & Yutong Ye & Yujiao Liu & Meiting Zhao & Zhiyong Tang & Yi Liu, 2024. "Biomimetic chiral hydrogen-bonded organic-inorganic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Ji Soo Kim & Hogeun Chang & Sungsu Kang & Seungwoo Cha & Hanguk Cho & Seung Jae Kwak & Namjun Park & Younhwa Kim & Dohun Kang & Chyan Kyung Song & Jimin Kwag & Ji-Sook Hahn & Won Bo Lee & Taeghwan Hye, 2023. "Critical roles of metal–ligand complexes in the controlled synthesis of various metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Xue-Jing Zhai & Meng-Yu Luo & Xi-Ming Luo & Xi-Yan Dong & Yubing Si & Chong Zhang & Zhen Han & Runping Han & Shuang-Quan Zang & Thomas C. W. Mak, 2024. "Hierarchical assembly of Ag40 nanowheel ranging from building blocks to diverse superstructure regulation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yongbo Song & Yingwei Li & Meng Zhou & Hao Li & Tingting Xu & Chuanjun Zhou & Feng Ke & Dayujia Huo & Yan Wan & Jialong Jie & Wen Wu Xu & Manzhou Zhu & Rongchao Jin, 2022. "Atomic structure of a seed-sized gold nanoprism," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Li-Juan Liu & Fahri Alkan & Shengli Zhuang & Dongyi Liu & Tehseen Nawaz & Jun Guo & Xiaozhou Luo & Jian He, 2023. "Atomically precise gold nanoclusters at the molecular-to-metallic transition with intrinsic chirality from surface layers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Yong Liu & Lihao Wang & Qianhui Ma & Xingtao Xu & Xin Gao & Haiguang Zhu & Ting Feng & Xinyue Dou & Miharu Eguchi & Yusuke Yamauchi & Xun Yuan, 2024. "Simultaneous generation of residue-free reactive oxygen species and bacteria capture for efficient electrochemical water disinfection," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Zhan-Hua Zhao & Bao-Liang Han & Hai-Feng Su & Qi-Lin Guo & Wen-Xin Wang & Jing-Qiu Zhuo & Yong-Nan Guo & Jia-Long Liu & Geng-Geng Luo & Ping Cui & Di Sun, 2024. "Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Xi-Ming Luo & Chun-Hua Gong & Fangfang Pan & Yubing Si & Jia-Wang Yuan & Muhammad Asad & Xi-Yan Dong & Shuang-Quan Zang & Thomas C. W. Mak, 2022. "Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Chang Liu & Yan Zhao & Tai-Song Zhang & Cheng-Bo Tao & Wenwen Fei & Sheng Zhang & Man-Bo Li, 2023. "Asymmetric transformation of achiral gold nanoclusters with negative nonlinear dependence between chiroptical activity and enantiomeric excess," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Nan Xia & Jianpei Xing & Di Peng & Shiyu Ji & Jun Zha & Nan Yan & Yan Su & Xue Jiang & Zhi Zeng & Jijun Zhao & Zhikun Wu, 2022. "Assembly-induced spin transfer and distance-dependent spin coupling in atomically precise AgCu nanoclusters," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49735-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.