IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34159-y.html
   My bibliography  Save this article

Formation of supramolecular channels by reversible unwinding-rewinding of bis(indole) double helix via ion coordination

Author

Listed:
  • Debashis Mondal

    (Indian Institute of Science Education and Research Pune)

  • Manzoor Ahmad

    (Indian Institute of Science Education and Research Pune)

  • Bijoy Dey

    (Tata Institute of Fundamental Research)

  • Abhishek Mondal

    (Indian Institute of Science Education and Research Pune)

  • Pinaki Talukdar

    (Indian Institute of Science Education and Research Pune)

Abstract

Stimulus-responsive reversible transformation between two structural conformers is an essential process in many biological systems. An example of such a process is the conversion of amyloid-β peptide into β-sheet-rich oligomers, which leads to the accumulation of insoluble amyloid in the brain, in Alzheimer’s disease. To reverse this unique structural shift and prevent amyloid accumulation, β-sheet breakers are used. Herein, we report a series of bis(indole)-based biofunctional molecules, which form a stable double helix structure in the solid and solution state. In presence of chloride anion, the double helical structure unwinds to form an anion-coordinated supramolecular polymeric channel, which in turn rewinds upon the addition of Ag+ salts. Moreover, the formation of the anion-induced supramolecular ion channel results in efficient ion transport across lipid bilayer membranes with excellent chloride selectivity. This work demonstrates anion-cation-assisted stimulus-responsive unwinding and rewinding of artificial double-helix systems, paving way for smart materials with better biomedical applications.

Suggested Citation

  • Debashis Mondal & Manzoor Ahmad & Bijoy Dey & Abhishek Mondal & Pinaki Talukdar, 2022. "Formation of supramolecular channels by reversible unwinding-rewinding of bis(indole) double helix via ion coordination," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34159-y
    DOI: 10.1038/s41467-022-34159-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34159-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34159-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Volker Berl & Ivan Huc & Richard G. Khoury & Michael J. Krische & Jean-Marie Lehn, 2000. "Interconversion of single and double helices formed from synthetic molecular strands," Nature, Nature, vol. 407(6805), pages 720-723, October.
    2. Daniel R. Burnham & Hazal B. Kose & Rebecca B. Hoyle & Hasan Yardimci, 2019. "The mechanism of DNA unwinding by the eukaryotic replicative helicase," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    3. Andreas Vargas Jentzsch & Daniel Emery & Jiri Mareda & Susanta K. Nayak & Pierangelo Metrangolo & Giuseppe Resnati & Naomi Sakai & Stefan Matile, 2012. "Transmembrane anion transport mediated by halogen-bond donors," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    4. Xiaosheng Yan & Kunshan Zou & Jinlian Cao & Xiaorui Li & Zhixing Zhao & Zhao Li & Anan Wu & Wanzhen Liang & Yirong Mo & Yunbao Jiang, 2019. "Single-handed supramolecular double helix of homochiral bis(N-amidothiourea) supported by double crossed C−I···S halogen bonds," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanshan Hong & Maria Vincenzo & Alberto Tiraferri & Erica Bertozzi & Radosław Górecki & Bambar Davaasuren & Xiang Li & Suzana P. Nunes, 2024. "Precision ion separation via self-assembled channels," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Xu & Li Zhou & Yan-Xiang Li & Run-Tan Gao & Zheng Chen & Na Liu & Zong-Quan Wu, 2023. "Thermo-responsive chiral micelles as recyclable organocatalyst for asymmetric Rauhut-Currier reaction in water," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Lilia Leisle & Kin Lam & Sepehr Dehghani-Ghahnaviyeh & Eva Fortea & Jason D. Galpin & Christopher A. Ahern & Emad Tajkhorshid & Alessio Accardi, 2022. "Backbone amides are determinants of Cl− selectivity in CLC ion channels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Lei Wei & Xinyue Hai & Tongtong Xu & Zidi Wang & Wentao Jiang & Shan Jiang & Qisheng Wang & Yue-Biao Zhang & Yingbo Zhao, 2024. "Encoding ordered structural complexity to covalent organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Zhichun Xu & Jianrong Feng & Daqi Yu & Yunjing Huo & Xiaohui Ma & Wai Hei Lam & Zheng Liu & Xiang David Li & Toyotaka Ishibashi & Shangyu Dang & Yuanliang Zhai, 2023. "Synergism between CMG helicase and leading strand DNA polymerase at replication fork," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Daniel Ramírez Montero & Humberto Sánchez & Edo Veen & Theo Laar & Belén Solano & John F. X. Diffley & Nynke H. Dekker, 2023. "Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34159-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.