IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36387-2.html
   My bibliography  Save this article

Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters

Author

Listed:
  • Yuan Zhong

    (Jilin University)

  • Jiangwei Zhang

    (Inner Mongolia University)

  • Tingting Li

    (Jilin Jianzhu University)

  • Wenwu Xu

    (Ningbo University)

  • Qiaofeng Yao

    (International Campus of Tianjin University, Binhai New City)

  • Min Lu

    (Jilin University)

  • Xue Bai

    (Jilin University)

  • Zhennan Wu

    (Jilin University)

  • Jianping Xie

    (National University of Singapore)

  • Yu Zhang

    (Jilin University)

Abstract

The restriction of structural vibration has assumed great importance in attaining bright emission of luminescent metal nanoclusters (NCs), where tremendous efforts are devoted to manipulating the surface landscape yet remain challenges for modulation of the structural vibration of the metal kernel. Here, we report efficient suppression of kernel vibration achieving enhancement in emission intensity, by rigidifying the surface of metal NCs and propagating as-developed strains into the metal core. Specifically, a layer-by-layer triple-ligands surface engineering is deployed to allow the solution-phase Au NCs with strong metal core-dictated fluorescence, up to the high absolute quantum yields of 90.3 ± 3.5%. The as-rigidified surface imposed by synergistic supramolecular interactions greatly influences the low-frequency acoustic vibration of the metal kernel, resulting in a subtle change in vibration frequency but a reduction in amplitude of oscillation. This scenario therewith impedes the non-radiative relaxation of electron dynamics, rendering the Au NCs with strong emission. The presented study exemplifies the linkage between surface chemistry and core-state emission of metal NCs, and proposes a strategy for brighter emitting metal NCs by regulating their interior metal core-involved motion.

Suggested Citation

  • Yuan Zhong & Jiangwei Zhang & Tingting Li & Wenwu Xu & Qiaofeng Yao & Min Lu & Xue Bai & Zhennan Wu & Jianping Xie & Yu Zhang, 2023. "Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36387-2
    DOI: 10.1038/s41467-023-36387-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36387-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36387-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingwei Li & Meng Zhou & Yongbo Song & Tatsuya Higaki & He Wang & Rongchao Jin, 2021. "Double-helical assembly of heterodimeric nanoclusters into supercrystals," Nature, Nature, vol. 594(7863), pages 380-384, June.
    2. K. R. Krishnadas & Ananya Baksi & Atanu Ghosh & Ganapati Natarajan & Thalappil Pradeep, 2016. "Structure-conserving spontaneous transformations between nanoparticles," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    3. Yitao Cao & Victor Fung & Qiaofeng Yao & Tiankai Chen & Shuangquan Zang & De-en Jiang & Jianping Xie, 2020. "Control of single-ligand chemistry on thiolated Au25 nanoclusters," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Anil Desireddy & Brian E. Conn & Jingshu Guo & Bokwon Yoon & Robert N. Barnett & Bradley M. Monahan & Kristin Kirschbaum & Wendell P. Griffith & Robert L. Whetten & Uzi Landman & Terry P. Bigioni, 2013. "Ultrastable silver nanoparticles," Nature, Nature, vol. 501(7467), pages 399-402, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Li & Tian Wang & Jiaojiao Han & Ying Xu & Xi Kang & Xiaosong Li & Manzhou Zhu, 2024. "Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Teng Jia & Yi-Xin Li & Xiao-Hong Ma & Miao-Miao Zhang & Xi-Yan Dong & Jie Ai & Shuang-Quan Zang, 2023. "Atomically precise ultrasmall copper cluster for room-temperature highly regioselective dehydrogenative coupling," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Jun Guo & Yulong Duan & Yunling Jia & Zelong Zhao & Xiaoqing Gao & Pai Liu & Fangfang Li & Hongli Chen & Yutong Ye & Yujiao Liu & Meiting Zhao & Zhiyong Tang & Yi Liu, 2024. "Biomimetic chiral hydrogen-bonded organic-inorganic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Ji Soo Kim & Hogeun Chang & Sungsu Kang & Seungwoo Cha & Hanguk Cho & Seung Jae Kwak & Namjun Park & Younhwa Kim & Dohun Kang & Chyan Kyung Song & Jimin Kwag & Ji-Sook Hahn & Won Bo Lee & Taeghwan Hye, 2023. "Critical roles of metal–ligand complexes in the controlled synthesis of various metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yongbo Song & Yingwei Li & Meng Zhou & Hao Li & Tingting Xu & Chuanjun Zhou & Feng Ke & Dayujia Huo & Yan Wan & Jialong Jie & Wen Wu Xu & Manzhou Zhu & Rongchao Jin, 2022. "Atomic structure of a seed-sized gold nanoprism," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Xi Kang & Xiao Wei & Xiaokang Liu & Sicong Wang & Tao Yao & Shuxin Wang & Manzhou Zhu, 2021. "A reasonable approach for the generation of hollow icosahedral kernels in metal nanoclusters," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.
    9. Zhihe Liu & Hua Tan & Bo Li & Zehua Hu & De-en Jiang & Qiaofeng Yao & Lei Wang & Jianping Xie, 2023. "Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Liang Qiao & Nia Pollard & Ravithree D. Senanayake & Zhi Yang & Minjung Kim & Arzeena S. Ali & Minh Tam Hoang & Nan Yao & Yimo Han & Rigoberto Hernandez & Andre Z. Clayborne & Matthew R. Jones, 2023. "Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Li-Juan Liu & Fahri Alkan & Shengli Zhuang & Dongyi Liu & Tehseen Nawaz & Jun Guo & Xiaozhou Luo & Jian He, 2023. "Atomically precise gold nanoclusters at the molecular-to-metallic transition with intrinsic chirality from surface layers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Xiao-Li Pei & Pei Zhao & Hitoshi Ube & Zhen Lei & Masahiro Ehara & Mitsuhiko Shionoya, 2024. "Single-gold etching at the hypercarbon atom of C-centred hexagold(I) clusters protected by chiral N-heterocyclic carbenes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Claudia Pigliacelli & Angela Acocella & Isabel Díez & Luca Moretti & Valentina Dichiarante & Nicola Demitri & Hua Jiang & Margherita Maiuri & Robin H. A. Ras & Francesca Baldelli Bombelli & Giulio Cer, 2022. "High-resolution crystal structure of a 20 kDa superfluorinated gold nanocluster," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Chang Liu & Yan Zhao & Tai-Song Zhang & Cheng-Bo Tao & Wenwen Fei & Sheng Zhang & Man-Bo Li, 2023. "Asymmetric transformation of achiral gold nanoclusters with negative nonlinear dependence between chiroptical activity and enantiomeric excess," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Nan Xia & Jianpei Xing & Di Peng & Shiyu Ji & Jun Zha & Nan Yan & Yan Su & Xue Jiang & Zhi Zeng & Jijun Zhao & Zhikun Wu, 2022. "Assembly-induced spin transfer and distance-dependent spin coupling in atomically precise AgCu nanoclusters," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36387-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.