IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-43700-6.html
   My bibliography  Save this article

Biomimetic chiral hydrogen-bonded organic-inorganic frameworks

Author

Listed:
  • Jun Guo

    (Tiangong University)

  • Yulong Duan

    (Tiangong University)

  • Yunling Jia

    (Tiangong University)

  • Zelong Zhao

    (Tiangong University)

  • Xiaoqing Gao

    (University of Chinese Academy of Sciences)

  • Pai Liu

    (Tiangong University)

  • Fangfang Li

    (Tiangong University)

  • Hongli Chen

    (Tiangong University)

  • Yutong Ye

    (Tiangong University)

  • Yujiao Liu

    (Tiangong University)

  • Meiting Zhao

    (Tianjin University)

  • Zhiyong Tang

    (National Center for Nanoscience and Technology)

  • Yi Liu

    (Tiangong University)

Abstract

Assembly ubiquitously occurs in nature and gives birth to numerous functional biomaterials and sophisticated organisms. In this work, chiral hydrogen-bonded organic-inorganic frameworks (HOIFs) are synthesized via biomimicking the self-assembly process from amino acids to proteins. Enjoying the homohelical configurations analogous to α-helix, the HOIFs exhibit remarkable chiroptical activity including the chiral fluorescence (glum = 1.7 × 10−3) that is untouched among the previously reported hydrogen-bonded frameworks. Benefitting from the dynamic feature of hydrogen bonding, HOIFs enable enantio-discrimination of chiral aliphatic substrates with imperceivable steric discrepancy based on fluorescent change. Moreover, the disassembled HOIFs after recognition applications are capable of being facilely regenerated and self-purified via aprotic solvent-induced reassembly, leading to at least three consecutive cycles without losing the enantioselectivity. The underlying mechanism of chirality bias is decoded by the experimental isothermal titration calorimetry together with theoretic simulation.

Suggested Citation

  • Jun Guo & Yulong Duan & Yunling Jia & Zelong Zhao & Xiaoqing Gao & Pai Liu & Fangfang Li & Hongli Chen & Yutong Ye & Yujiao Liu & Meiting Zhao & Zhiyong Tang & Yi Liu, 2024. "Biomimetic chiral hydrogen-bonded organic-inorganic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-43700-6
    DOI: 10.1038/s41467-023-43700-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43700-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43700-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Nakajima & D. Hirobe & G. Kawaguchi & Y. Nabei & T. Sato & T. Narushima & H. Okamoto & H. M. Yamamoto, 2023. "Giant spin polarization and a pair of antiparallel spins in a chiral superconductor," Nature, Nature, vol. 613(7944), pages 479-484, January.
    2. Jia Wei & Silvana Leit & Jun Kuai & Eric Therrien & Salma Rafi & H. James Harwood & Byron DeLaBarre & Liang Tong, 2019. "An allosteric mechanism for potent inhibition of human ATP-citrate lyase," Nature, Nature, vol. 568(7753), pages 566-570, April.
    3. Shan Zhou & Jiahui Li & Jun Lu & Haihua Liu & Ji-Young Kim & Ahyoung Kim & Lehan Yao & Chang Liu & Chang Qian & Zachary D. Hood & Xiaoying Lin & Wenxiang Chen & Thomas E. Gage & Ilke Arslan & Alex Tra, 2022. "Chiral assemblies of pinwheel superlattices on substrates," Nature, Nature, vol. 612(7939), pages 259-265, December.
    4. Yingwei Li & Meng Zhou & Yongbo Song & Tatsuya Higaki & He Wang & Rongchao Jin, 2021. "Double-helical assembly of heterodimeric nanoclusters into supercrystals," Nature, Nature, vol. 594(7863), pages 380-384, June.
    5. Zongsu Han & Kunyu Wang & Yifan Guo & Wenjie Chen & Jiale Zhang & Xinran Zhang & Giuliano Siligardi & Sihai Yang & Zhen Zhou & Pingchuan Sun & Wei Shi & Peng Cheng, 2019. "Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianran Zhang & Dengping Lyu & Wei Xu & Xuan Feng & Ran Ni & Yufeng Wang, 2023. "Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Liang Qiao & Nia Pollard & Ravithree D. Senanayake & Zhi Yang & Minjung Kim & Arzeena S. Ali & Minh Tam Hoang & Nan Yao & Yimo Han & Rigoberto Hernandez & Andre Z. Clayborne & Matthew R. Jones, 2023. "Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Hiroki Aizawa & Takuro Sato & Saori Maki-Yonekura & Koji Yonekura & Kiyofumi Takaba & Tasuku Hamaguchi & Taketoshi Minato & Hiroshi M. Yamamoto, 2023. "Enantioselectivity of discretized helical supramolecule consisting of achiral cobalt phthalocyanines via chiral-induced spin selectivity effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yongbo Song & Yingwei Li & Meng Zhou & Hao Li & Tingting Xu & Chuanjun Zhou & Feng Ke & Dayujia Huo & Yan Wan & Jialong Jie & Wen Wu Xu & Manzhou Zhu & Rongchao Jin, 2022. "Atomic structure of a seed-sized gold nanoprism," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Li-Juan Liu & Fahri Alkan & Shengli Zhuang & Dongyi Liu & Tehseen Nawaz & Jun Guo & Xiaozhou Luo & Jian He, 2023. "Atomically precise gold nanoclusters at the molecular-to-metallic transition with intrinsic chirality from surface layers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Falon C. Kalutantirige & Jinlong He & Lehan Yao & Stephen Cotty & Shan Zhou & John W. Smith & Emad Tajkhorshid & Charles M. Schroeder & Jeffrey S. Moore & Hyosung An & Xiao Su & Ying Li & Qian Chen, 2024. "Beyond nothingness in the formation and functional relevance of voids in polymer films," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Hao Li & Tian Wang & Jiaojiao Han & Ying Xu & Xi Kang & Xiaosong Li & Manzhou Zhu, 2024. "Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Qing Zhang & Weiqiang Wang & Shuang Zhou & Rui Zhang & Irmgard Bischofberger, 2024. "Flow-induced periodic chiral structures in an achiral nematic liquid crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Jichao Jia & Xue Cao & Xuekai Ma & Jianbo De & Jiannian Yao & Stefan Schumacher & Qing Liao & Hongbing Fu, 2023. "Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Xuepeng Wei & Kollin Schultz & Hannah L. Pepper & Emily Megill & Austin Vogt & Nathaniel W. Snyder & Ronen Marmorstein, 2023. "Allosteric role of the citrate synthase homology domain of ATP citrate lyase," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Yuan Zhong & Jiangwei Zhang & Tingting Li & Wenwu Xu & Qiaofeng Yao & Min Lu & Xue Bai & Zhennan Wu & Jianping Xie & Yu Zhang, 2023. "Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Chang Liu & Yan Zhao & Tai-Song Zhang & Cheng-Bo Tao & Wenwen Fei & Sheng Zhang & Man-Bo Li, 2023. "Asymmetric transformation of achiral gold nanoclusters with negative nonlinear dependence between chiroptical activity and enantiomeric excess," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Nan Xia & Jianpei Xing & Di Peng & Shiyu Ji & Jun Zha & Nan Yan & Yan Su & Xue Jiang & Zhi Zeng & Jijun Zhao & Zhikun Wu, 2022. "Assembly-induced spin transfer and distance-dependent spin coupling in atomically precise AgCu nanoclusters," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-43700-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.