Author
Listed:
- Hu, Deng-wang
- Wang, Fei
- Li, Jia-cheng
- Deng, Tao
- Wu, Jia-gui
- Wu, Zheng-mao
- Xia, Guang-qiong
Abstract
Currently, optical chaos comb generation primarily relies on dielectric nonlinear micro-cavities on-chip, which require a high quality-factor. This increases complexity, cost, and potential compatibility issues with photonic integration. Here, we propose and experimentally verify a novel and simplified scheme for generating chaotic combs. We utilize a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) connected to a single ferrule connector with physical connection to generate a wideband chaotic comb. It is possible to achieve over 70 chaotic carrier channels, covering a spectral range exceeding 40 nm. The effective bandwidth of the single channel chaotic signal reaches 15.43 GHz. The Pearson correlation coefficient between randomly selected two-channel time series is −0.0033, indicating an almost negligible level of correlation. The cross-correlation among the 15 channels in the wavelength range of 1546.4–1554.5 nm is all within 0.05, meeting orthogonality requirements and distinguishing it from traditional FPLD with external feedback. The offline random bit sequences generated by single-channel chaos have been validated using the National Institute of Standards and Technology Special Publication 800-22 Statistical Test suite, thereby confirming the practicality of our proposed scheme. Since each chaotic carrier can be used as an independent chaotic entropy source after filtering and extraction, so the data throughput of the offline random number sequence generated by this scheme is expected to reach 22.40 Tbits/s (320 Gbits/s × 70 = 22.40 Tbits/s). Furthermore, III-V-based WRC-FPLDs offer the advantage of monolithic integration, which makes them potentially capable of achieving miniaturization, cost-effectiveness, massively parallel high-speed random bit generation, and parallel chaotic LiDAR and WDM chaotic secure communication in the future.
Suggested Citation
Hu, Deng-wang & Wang, Fei & Li, Jia-cheng & Deng, Tao & Wu, Jia-gui & Wu, Zheng-mao & Xia, Guang-qiong, 2024.
"Wideband chaotic comb source using a weak-resonant-cavity Fabry-Perot laser diode subject to optical feedback for parallel random number generation,"
Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
Handle:
RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010105
DOI: 10.1016/j.chaos.2024.115458
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.