IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27469-0.html
   My bibliography  Save this article

Ultra-broadband Kerr microcomb through soliton spectral translation

Author

Listed:
  • Gregory Moille

    (NIST/University of Maryland
    National Institute of Standards and Technology)

  • Edgar F. Perez

    (NIST/University of Maryland
    National Institute of Standards and Technology)

  • Jordan R. Stone

    (NIST/University of Maryland
    National Institute of Standards and Technology)

  • Ashutosh Rao

    (National Institute of Standards and Technology
    University of Maryland)

  • Xiyuan Lu

    (National Institute of Standards and Technology
    University of Maryland)

  • Tahmid Sami Rahman

    (NIST/University of Maryland)

  • Yanne K. Chembo

    (University of Maryland)

  • Kartik Srinivasan

    (NIST/University of Maryland
    National Institute of Standards and Technology)

Abstract

Broadband and low-noise microresonator frequency combs (microcombs) are critical for deployable optical frequency measurements. Here we expand the bandwidth of a microcomb far beyond its anomalous dispersion region on both sides of its spectrum through spectral translation mediated by mixing of a dissipative Kerr soliton and a secondary pump. We introduce the concept of synthetic dispersion to qualitatively capture the system’s key physical behavior, in which the second pump enables spectral translation through four-wave mixing Bragg scattering. Experimentally, we pump a silicon nitride microring at 1063 nm and 1557 nm to enable soliton spectral translation, resulting in a total bandwidth of 1.6 octaves (137–407 THz). We examine the comb’s low-noise characteristics, through heterodyne beat note measurements across its spectrum, measurements of the comb tooth spacing in its primary and spectrally translated portions, and their relative noise. These ultra-broadband microcombs provide new opportunities for optical frequency synthesis, optical atomic clocks, and reaching previously unattainable wavelengths.

Suggested Citation

  • Gregory Moille & Edgar F. Perez & Jordan R. Stone & Ashutosh Rao & Xiyuan Lu & Tahmid Sami Rahman & Yanne K. Chembo & Kartik Srinivasan, 2021. "Ultra-broadband Kerr microcomb through soliton spectral translation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27469-0
    DOI: 10.1038/s41467-021-27469-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27469-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27469-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maxim Karpov & Martin H. P. Pfeiffer & Junqiu Liu & Anton Lukashchuk & Tobias J. Kippenberg, 2018. "Photonic chip-based soliton frequency combs covering the biological imaging window," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Shuangyou Zhang & Jonathan M. Silver & Toby Bi & Pascal Del’Haye, 2020. "Spectral extension and synchronization of microcombs in a single microresonator," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Arslan S. Raja & Andrey S. Voloshin & Hairun Guo & Sofya E. Agafonova & Junqiu Liu & Alexander S. Gorodnitskiy & Maxim Karpov & Nikolay G. Pavlov & Erwan Lucas & Ramzil R. Galiev & Artem E. Shitikov &, 2019. "Author Correction: Electrically pumped photonic integrated soliton microcomb," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    4. Hao-Jing Chen & Qing-Xin Ji & Heming Wang & Qi-Fan Yang & Qi-Tao Cao & Qihuang Gong & Xu Yi & Yun-Feng Xiao, 2020. "Chaos-assisted two-octave-spanning microcombs," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    5. Arslan S. Raja & Andrey S. Voloshin & Hairun Guo & Sofya E. Agafonova & Junqiu Liu & Alexander S. Gorodnitskiy & Maxim Karpov & Nikolay G. Pavlov & Erwan Lucas & Ramzil R. Galiev & Artem E. Shitikov &, 2019. "Electrically pumped photonic integrated soliton microcomb," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    6. Th. Udem & R. Holzwarth & T. W. Hänsch, 2002. "Optical frequency metrology," Nature, Nature, vol. 416(6877), pages 233-237, March.
    7. Daryl T. Spencer & Tara Drake & Travis C. Briles & Jordan Stone & Laura C. Sinclair & Connor Fredrick & Qing Li & Daron Westly & B. Robert Ilic & Aaron Bluestone & Nicolas Volet & Tin Komljenovic & Li, 2018. "An optical-frequency synthesizer using integrated photonics," Nature, Nature, vol. 557(7703), pages 81-85, May.
    8. Johann Riemensberger & Anton Lukashchuk & Maxim Karpov & Wenle Weng & Erwan Lucas & Junqiu Liu & Tobias J. Kippenberg, 2020. "Massively parallel coherent laser ranging using a soliton microcomb," Nature, Nature, vol. 581(7807), pages 164-170, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaojing Zhang & Keyi Zhong & Xuetong Zhou & Hon Ki Tsang, 2022. "Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Chao Xiang & Joel Guo & Warren Jin & Lue Wu & Jonathan Peters & Weiqiang Xie & Lin Chang & Boqiang Shen & Heming Wang & Qi-Fan Yang & David Kinghorn & Mario Paniccia & Kerry J. Vahala & Paul A. Morton, 2021. "High-performance lasers for fully integrated silicon nitride photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Arslan Sajid Raja & Sophie Lange & Maxim Karpov & Kai Shi & Xin Fu & Raphael Behrendt & Daniel Cletheroe & Anton Lukashchuk & Istvan Haller & Fotini Karinou & Benn Thomsen & Krzysztof Jozwik & Junqiu , 2021. "Ultrafast optical circuit switching for data centers using integrated soliton microcombs," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Thibault Wildi & Alexander E. Ulanov & Thibault Voumard & Bastian Ruhnke & Tobias Herr, 2024. "Phase-stabilised self-injection-locked microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Miles H. Anderson & Wenle Weng & Grigory Lihachev & Alexey Tikan & Junqiu Liu & Tobias J. Kippenberg, 2022. "Zero dispersion Kerr solitons in optical microresonators," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Grigory Lihachev & Wenle Weng & Junqiu Liu & Lin Chang & Joel Guo & Jijun He & Rui Ning Wang & Miles H. Anderson & Yang Liu & John E. Bowers & Tobias J. Kippenberg, 2022. "Platicon microcomb generation using laser self-injection locking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Yang He & Raymond Lopez-Rios & Usman A. Javid & Jingwei Ling & Mingxiao Li & Shixin Xue & Kerry Vahala & Qiang Lin, 2023. "High-speed tunable microwave-rate soliton microcomb," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Mingming Nie & Jonathan Musgrave & Kunpeng Jia & Jan Bartos & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2024. "Turnkey photonic flywheel in a microresonator-filtered laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Okan Atalar & Raphaël Laer & Amir H. Safavi-Naeini & Amin Arbabian, 2022. "Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Yaojing Zhang & Keyi Zhong & Xuetong Zhou & Hon Ki Tsang, 2022. "Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Dong-Chel Shin & Byung Soo Kim & Heesuk Jang & Young-Jin Kim & Seung-Woo Kim, 2023. "Photonic comb-rooted synthesis of ultra-stable terahertz frequencies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Robert M. Gray & Mingchen Liu & Selina Zhou & Arkadev Roy & Luis Ledezma & Alireza Marandi, 2024. "Quadratic-soliton-enhanced mid-IR molecular sensing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27469-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.