IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39232-8.html
   My bibliography  Save this article

CP2 skyrmions and skyrmion crystals in realistic quantum magnets

Author

Listed:
  • Hao Zhang

    (The University of Tennessee
    Oak Ridge National Laboratory
    Los Alamos National Laboratory)

  • Zhentao Wang

    (The University of Tennessee
    University of Minnesota
    Zhejiang University)

  • David Dahlbom

    (The University of Tennessee)

  • Kipton Barros

    (Los Alamos National Laboratory)

  • Cristian D. Batista

    (The University of Tennessee
    Oak Ridge National Laboratory)

Abstract

Magnetic skyrmions are nanoscale topological textures that have been recently observed in different families of quantum magnets. These objects are called CP1 skyrmions because they are built from dipoles—the target manifold is the 1D complex projective space, CP1 ≅ S2. Here we report the emergence of magnetic CP2 skyrmions in a realistic spin-1 model, which includes both dipole and quadrupole moments. Unlike CP1 skyrmions, CP2 skyrmions can also arise as metastable textures of quantum paramagnets, opening a new road to discover emergent topological solitons in non-magnetic materials. The quantum phase diagram of the spin-1 model also includes magnetic field-induced CP2 skyrmion crystals that can be detected with regular momentum- (diffraction) and real-space (Lorentz transmission electron microscopy) experimental techniques.

Suggested Citation

  • Hao Zhang & Zhentao Wang & David Dahlbom & Kipton Barros & Cristian D. Batista, 2023. "CP2 skyrmions and skyrmion crystals in realistic quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39232-8
    DOI: 10.1038/s41467-023-39232-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39232-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39232-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. O. Leonov & M. Mostovoy, 2015. "Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    2. X. Z. Yu & Y. Tokunaga & Y. Kaneko & W. Z. Zhang & K. Kimoto & Y. Matsui & Y. Taguchi & Y. Tokura, 2014. "Biskyrmion states and their current-driven motion in a layered manganite," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    3. Max Hirschberger & Taro Nakajima & Shang Gao & Licong Peng & Akiko Kikkawa & Takashi Kurumaji & Markus Kriener & Yuichi Yamasaki & Hajime Sagayama & Hironori Nakao & Kazuki Ohishi & Kazuhisa Kakurai &, 2019. "Skyrmion phase and competing magnetic orders on a breathing kagomé lattice," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. X. Z. Yu & Y. Onose & N. Kanazawa & J. H. Park & J. H. Han & Y. Matsui & N. Nagaosa & Y. Tokura, 2010. "Real-space observation of a two-dimensional skyrmion crystal," Nature, Nature, vol. 465(7300), pages 901-904, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoru Hayami & Tsuyoshi Okubo & Yukitoshi Motome, 2021. "Phase shift in skyrmion crystals," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    2. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Rina Takagi & Naofumi Matsuyama & Victor Ukleev & Le Yu & Jonathan S. White & Sonia Francoual & José R. L. Mardegan & Satoru Hayami & Hiraku Saito & Koji Kaneko & Kazuki Ohishi & Yoshichika Ōnuki & Ta, 2022. "Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Mona Bhukta & Takaaki Dohi & Venkata Krishna Bharadwaj & Ricardo Zarzuela & Maria-Andromachi Syskaki & Michael Foerster & Miguel Angel Niño & Jairo Sinova & Robert Frömter & Mathias Kläui, 2024. "Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Mara Gutzeit & André Kubetzka & Soumyajyoti Haldar & Henning Pralow & Moritz A. Goerzen & Roland Wiesendanger & Stefan Heinze & Kirsten Bergmann, 2022. "Nano-scale collinear multi-Q states driven by higher-order interactions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yoshihiro D. Kato & Yoshihiro Okamura & Max Hirschberger & Yoshinori Tokura & Youtarou Takahashi, 2023. "Topological magneto-optical effect from skyrmion lattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Hikaru Takeda & Masataka Kawano & Kyo Tamura & Masatoshi Akazawa & Jian Yan & Takeshi Waki & Hiroyuki Nakamura & Kazuki Sato & Yasuo Narumi & Masayuki Hagiwara & Minoru Yamashita & Chisa Hotta, 2024. "Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Fumiya Sekiguchi & Kestutis Budzinauskas & Prashant Padmanabhan & Rolf B. Versteeg & Vladimir Tsurkan & István Kézsmárki & Francesco Foggetti & Sergey Artyukhin & Paul H. M. Loosdrecht, 2022. "Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Weiwei Wang & Dongsheng Song & Wensen Wei & Pengfei Nan & Shilei Zhang & Binghui Ge & Mingliang Tian & Jiadong Zang & Haifeng Du, 2022. "Electrical manipulation of skyrmions in a chiral magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Yu-Tsun Shao & Sujit Das & Zijian Hong & Ruijuan Xu & Swathi Chandrika & Fernando Gómez-Ortiz & Pablo García-Fernández & Long-Qing Chen & Harold Y. Hwang & Javier Junquera & Lane W. Martin & Ramamoort, 2023. "Emergent chirality in a polar meron to skyrmion phase transition," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. C. J. O. Reichhardt & C. Reichhardt, 2022. "Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-16, August.
    12. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Imara Lima Fernandes & Stefan Blügel & Samir Lounis, 2022. "Spin-orbit enabled all-electrical readout of chiral spin-textures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Fehmi Sami Yasin & Jan Masell & Kosuke Karube & Daisuke Shindo & Yasujiro Taguchi & Yoshinori Tokura & Xiuzhen Yu, 2023. "Heat current-driven topological spin texture transformations and helical q-vector switching," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Hongrui Zhang & Yu-Tsun Shao & Xiang Chen & Binhua Zhang & Tianye Wang & Fanhao Meng & Kun Xu & Peter Meisenheimer & Xianzhe Chen & Xiaoxi Huang & Piush Behera & Sajid Husain & Tiancong Zhu & Hao Pan , 2024. "Spin disorder control of topological spin texture," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Pyeongjae Park & Woonghee Cho & Chaebin Kim & Yeochan An & Yoon-Gu Kang & Maxim Avdeev & Romain Sibille & Kazuki Iida & Ryoichi Kajimoto & Ki Hoon Lee & Woori Ju & En-Jin Cho & Han-Jin Noh & Myung Joo, 2023. "Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. John H. Gaida & Hugo Lourenço-Martins & Sergey V. Yalunin & Armin Feist & Murat Sivis & Thorsten Hohage & F. Javier García de Abajo & Claus Ropers, 2023. "Lorentz microscopy of optical fields," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Yong Yu & Xiao Xu & Yan Wang & Baohai Jia & Shan Huang & Xiaobin Qiang & Bin Zhu & Peijian Lin & Binbin Jiang & Shixuan Liu & Xia Qi & Kefan Pan & Di Wu & Haizhou Lu & Michel Bosman & Stephen J. Penny, 2022. "Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Yongsen Zhang & Jin Tang & Yaodong Wu & Meng Shi & Xitong Xu & Shouguo Wang & Mingliang Tian & Haifeng Du, 2024. "Stable skyrmion bundles at room temperature and zero magnetic field in a chiral magnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Xiaowei Lv & Hualiang Lv & Yalei Huang & Ruixuan Zhang & Guanhua Qin & Yihui Dong & Min Liu & Ke Pei & Guixin Cao & Jincang Zhang & Yuxiang Lai & Renchao Che, 2024. "Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39232-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.