IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28066-5.html
   My bibliography  Save this article

Optical-domain spectral super-resolution via a quantum-memory-based time-frequency processor

Author

Listed:
  • Mateusz Mazelanik

    (University of Warsaw
    University of Warsaw)

  • Adam Leszczyński

    (University of Warsaw
    University of Warsaw)

  • Michał Parniak

    (University of Warsaw
    Universtiy of Copenhagen)

Abstract

Existing super-resolution methods of optical imaging hold a solid place as an application in natural sciences, but many new developments allow for beating the diffraction limit in a more subtle way. One of the recently explored strategies to fully exploit information already present in the field is to perform a quantum-inspired tailored measurements. Here we exploit the full spectral information of the optical field in order to beat the Rayleigh limit in spectroscopy. We employ an optical quantum memory with spin-wave storage and an embedded processing capability to implement a time-inversion interferometer for input light, projecting the optical field in the symmetric-antisymmetric mode basis. Our tailored measurement achieves a resolution of 15 kHz and requires 20 times less photons than a corresponding Rayleigh-limited conventional method. We demonstrate the advantage of our technique over both conventional spectroscopy and heterodyne measurements, showing potential for application in distinguishing ultra-narrowband emitters, optical communication channels, or signals transduced from lower-frequency domains.

Suggested Citation

  • Mateusz Mazelanik & Adam Leszczyński & Michał Parniak, 2022. "Optical-domain spectral super-resolution via a quantum-memory-based time-frequency processor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28066-5
    DOI: 10.1038/s41467-022-28066-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28066-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28066-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mahdi Hosseini & Ben M. Sparkes & Gabriel Hétet & Jevon J. Longdell & Ping Koy Lam & Ben C. Buchler, 2009. "Coherent optical pulse sequencer for quantum applications," Nature, Nature, vol. 461(7261), pages 241-245, September.
    2. Risheng Cheng & Chang-Ling Zou & Xiang Guo & Sihao Wang & Xu Han & Hong X. Tang, 2019. "Broadband on-chip single-photon spectrometer," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    3. Kazuki Hashimoto & Takuro Ideguchi, 2018. "Phase-controlled Fourier-transform spectroscopy," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    4. David R. Glenn & Dominik B. Bucher & Junghyun Lee & Mikhail D. Lukin & Hongkun Park & Ronald L. Walsworth, 2018. "High-resolution magnetic resonance spectroscopy using a solid-state spin sensor," Nature, Nature, vol. 555(7696), pages 351-354, March.
    5. T. Gefen & A. Rotem & A. Retzker, 2019. "Overcoming resolution limits with quantum sensing," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Sebastian Zaiser & Torsten Rendler & Ingmar Jakobi & Thomas Wolf & Sang-Yun Lee & Samuel Wagner & Ville Bergholm & Thomas Schulte-Herbrüggen & Philipp Neumann & Jörg Wrachtrup, 2016. "Enhancing quantum sensing sensitivity by a quantum memory," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    7. Mohammad Mirhosseini & Alp Sipahigil & Mahmoud Kalaee & Oskar Painter, 2020. "Superconducting qubit to optical photon transduction," Nature, Nature, vol. 588(7839), pages 599-603, December.
    8. Michał Parniak & Michał Dąbrowski & Mateusz Mazelanik & Adam Leszczyński & Michał Lipka & Wojciech Wasilewski, 2017. "Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    9. Tian-Shu Yang & Zong-Quan Zhou & Yi-Lin Hua & Xiao Liu & Zong-Feng Li & Pei-Yun Li & Yu Ma & Chao Liu & Peng-Jun Liang & Xue Li & Yi-Xin Xiao & Jun Hu & Chuan-Feng Li & Guang-Can Guo, 2018. "Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Ozgur Sahin & Erica Leon Sanchez & Sophie Conti & Amala Akkiraju & Paul Reshetikhin & Emanuel Druga & Aakriti Aggarwal & Benjamin Gilbert & Sunil Bhave & Ashok Ajoy, 2022. "High field magnetometry with hyperpolarized nuclear spins," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. André G. Primo & Pedro V. Pinho & Rodrigo Benevides & Simon Gröblacher & Gustavo S. Wiederhecker & Thiago P. Mayer Alegre, 2023. "Dissipative optomechanics in high-frequency nanomechanical resonators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Rishabh Sahu & William Hease & Alfredo Rueda & Georg Arnold & Liu Qiu & Johannes M. Fink, 2022. "Quantum-enabled operation of a microwave-optical interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Rugang Geng & Adrian Mena & William J. Pappas & Dane R. McCamey, 2023. "Sub-micron spin-based magnetic field imaging with an organic light emitting diode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Hugo Molinares & Bing He & Vitalie Eremeev, 2023. "Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    11. Arjun Iyer & Yadav P. Kandel & Wendao Xu & John M. Nichol & William H. Renninger, 2024. "Coherent optical coupling to surface acoustic wave devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Liu Qiu & Rishabh Sahu & William Hease & Georg Arnold & Johannes M. Fink, 2023. "Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Lukas M. Veldman & Evert W. Stolte & Mark P. Canavan & Rik Broekhoven & Philip Willke & Laëtitia Farinacci & Sander Otte, 2024. "Coherent spin dynamics between electron and nucleus within a single atom," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Chiao-Hsuan Wang & Fangxin Li & Liang Jiang, 2022. "Quantum capacities of transducers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Sophie W. Ding & Michael Haas & Xinghan Guo & Kazuhiro Kuruma & Chang Jin & Zixi Li & David D. Awschalom & Nazar Delegan & F. Joseph Heremans & Alexander A. High & Marko Loncar, 2024. "High-Q cavity interface for color centers in thin film diamond," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Dario Lago-Rivera & Jelena V. Rakonjac & Samuele Grandi & Hugues de Riedmatten, 2023. "Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    17. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Roel Burgwal & Ewold Verhagen, 2023. "Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Roberto Rizzato & Martin Schalk & Stephan Mohr & Jens C. Hermann & Joachim P. Leibold & Fleming Bruckmaier & Giovanna Salvitti & Chenjiang Qian & Peirui Ji & Georgy V. Astakhov & Ulrich Kentsch & Manf, 2023. "Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Xinghan Guo & Mouzhe Xie & Anchita Addhya & Avery Linder & Uri Zvi & Stella Wang & Xiaofei Yu & Tanvi D. Deshmukh & Yuzi Liu & Ian N. Hammock & Zixi Li & Clayton T. DeVault & Amy Butcher & Aaron P. Es, 2024. "Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28066-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.