IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27078-x.html
   My bibliography  Save this article

Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo

Author

Listed:
  • Huapan Fang

    (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
    University of Science and Technology of China
    Jilin Biomedical Polymers Engineering Laboratory
    Soochow University)

  • Zhaopei Guo

    (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)

  • Jie Chen

    (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
    University of Science and Technology of China
    Jilin Biomedical Polymers Engineering Laboratory)

  • Lin Lin

    (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
    University of Science and Technology of China
    Jilin Biomedical Polymers Engineering Laboratory)

  • Yingying Hu

    (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
    University of Science and Technology of China
    Jilin Biomedical Polymers Engineering Laboratory)

  • Yanhui Li

    (Changchun University of Science and Technology)

  • Huayu Tian

    (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
    University of Science and Technology of China
    Jilin Biomedical Polymers Engineering Laboratory)

  • Xuesi Chen

    (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
    University of Science and Technology of China
    Jilin Biomedical Polymers Engineering Laboratory)

Abstract

Immunotherapy has become a powerful cancer treatment, but only a small fraction of patients have achieved durable benefits due to the immune escape mechanism. In this study, epigenetic regulation is combined with gene therapy-mediated immune checkpoint blockade to relieve this immune escape mechanism. PPD (i.e., mPEG-b-PLG/PEI-RT3/DNA) is developed to mediate plasmid-encoding shPD-L1 delivery by introducing multiple interactions (i.e., electrostatic, hydrogen bonding, and hydrophobic interactions) and polyproline II (PPII)-helix conformation, which downregulates PD-L1 expression on tumour cells to relieve the immunosuppression of T cells. Zebularine (abbreviated as Zeb), a DNA methyltransferase inhibitor (DNMTi), is used for the epigenetic regulation of the tumour immune microenvironment, thus inducing DC maturation and MHC I molecule expression to enhance antigen presentation. PPD plus Zeb combination therapy initiates a systemic anti-tumour immune response and effectively prevents tumour relapse and metastasis by generating durable immune memory. This strategy provides a scheme for tumour treatment and the inhibition of relapse and metastasis.

Suggested Citation

  • Huapan Fang & Zhaopei Guo & Jie Chen & Lin Lin & Yingying Hu & Yanhui Li & Huayu Tian & Xuesi Chen, 2021. "Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27078-x
    DOI: 10.1038/s41467-021-27078-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27078-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27078-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wantong Song & Limei Shen & Ying Wang & Qi Liu & Tyler J. Goodwin & Jingjing Li & Olekasandra Dorosheva & Tianzhou Liu & Rihe Liu & Leaf Huang, 2018. "Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Jianqin Lu & Xiangsheng Liu & Yu-Pei Liao & Felix Salazar & Bingbing Sun & Wen Jiang & Chong Hyun Chang & Jinhong Jiang & Xiang Wang & Anna M. Wu & Huan Meng & Andre E. Nel, 2017. "Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    3. Rachel Rosenthal & Elizabeth Larose Cadieux & Roberto Salgado & Maise Al Bakir & David A. Moore & Crispin T. Hiley & Tom Lund & Miljana Tanić & James L. Reading & Kroopa Joshi & Jake Y. Henry & Ehsan , 2019. "Neoantigen-directed immune escape in lung cancer evolution," Nature, Nature, vol. 567(7749), pages 479-485, March.
    4. Jutaek Nam & Sejin Son & Lukasz J. Ochyl & Rui Kuai & Anna Schwendeman & James J. Moon, 2018. "Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    5. Joan Massagué & Anna C. Obenauf, 2016. "Metastatic colonization by circulating tumour cells," Nature, Nature, vol. 529(7586), pages 298-306, January.
    6. Qian Chen & Ligeng Xu & Chao Liang & Chao Wang & Rui Peng & Zhuang Liu, 2016. "Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
    7. Lauren E. Stopfer & Joshua M. Mesfin & Brian A. Joughin & Douglas A. Lauffenburger & Forest M. White, 2020. "Multiplexed relative and absolute quantitative immunopeptidomics reveals MHC I repertoire alterations induced by CDK4/6 inhibition," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaiyuan Wang & Xuanbo Zhang & Hao Ye & Xia Wang & Zhijin Fan & Qi Lu & Songhao Li & Jian Zhao & Shunzhe Zheng & Zhonggui He & Qianqian Ni & Xiaoyuan Chen & Jin Sun, 2023. "Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Tianqun Lang & Runqi Zhu & Xiao Zhu & Wenlu Yan & Yu Li & Yihui Zhai & Ting Wu & Xin Huang & Qi Yin & Yaping Li, 2023. "Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Xin Li & Tuying Yong & Zhaohan Wei & Nana Bie & Xiaoqiong Zhang & Guiting Zhan & Jianye Li & Jiaqi Qin & Jingjing Yu & Bixiang Zhang & Lu Gan & Xiangliang Yang, 2022. "Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Li, Zhijing & Lei, Hui & Kan, Ankang & Xie, Huaqing & Yu, Wei, 2021. "Photothermal applications based on graphene and its derivatives: A state-of-the-art review," Energy, Elsevier, vol. 216(C).
    5. Rong Xiao & Deshu Xu & Meili Zhang & Zhanghua Chen & Li Cheng & Songjie Du & Mingfei Lu & Tonghai Zhou & Ruoyan Li & Fan Bai & Yue Huang, 2024. "Aneuploid embryonic stem cells drive teratoma metastasis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Philip East & Gavin P. Kelly & Dhruva Biswas & Michela Marani & David C. Hancock & Todd Creasy & Kris Sachsenmeier & Charles Swanton & Julian Downward & Sophie de Carné Trécesson, 2022. "RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Tian-Yu Song & Min Long & Hai-Xin Zhao & Miao-Wen Zou & Hong-Jie Fan & Yang Liu & Chen-Lu Geng & Min-Fang Song & Yu-Feng Liu & Jun-Yi Chen & Yu-Lin Yang & Wen-Rong Zhou & Da-Wei Huang & Bo Peng & Zhen, 2021. "Tumor evolution selectively inactivates the core microRNA machinery for immune evasion," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Yue Yan & Binlong Chen & Qingqing Yin & Zenghui Wang & Ye Yang & Fangjie Wan & Yaoqi Wang & Mingmei Tang & Heming Xia & Meifang Chen & Jianxiong Liu & Siling Wang & Qiang Zhang & Yiguang Wang, 2022. "Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Zhaoqing Shi & Miaomiao Luo & Qili Huang & Chendi Ding & Wenyan Wang & Yinglong Wu & Jingjing Luo & Chuchu Lin & Ting Chen & Xiaowei Zeng & Lin Mei & Yanli Zhao & Hongzhong Chen, 2023. "NIR-dye bridged human serum albumin reassemblies for effective photothermal therapy of tumor," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Sijia Cui & Nicholas McGranahan & Jing Gao & Peng Chen & Wei Jiang & Lingrong Yang & Li Ma & Junfang Liao & Tian Xie & Congying Xie & Tariq Enver & Shixiu Wu, 2023. "Tracking the evolution of esophageal squamous cell carcinoma under dynamic immune selection by multi-omics sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Rong Sun & Mingzhu Liu & Jianping Lu & Binbin Chu & Yunmin Yang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Zhiren Wang & Wenpan Li & Yanhao Jiang & Jonghan Park & Karina Marie Gonzalez & Xiangmeng Wu & Qing-Yu Zhang & Jianqin Lu, 2024. "Cholesterol-modified sphingomyelin chimeric lipid bilayer for improved therapeutic delivery," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Juan Blanco-Heredia & Carla Anjos Souza & Juan L. Trincado & Maria Gonzalez-Cao & Samuel Gonçalves-Ribeiro & Sara Ruiz Gil & Dmytro Pravdyvets & Samandhy Cedeño & Maurizio Callari & Antonio Marra & An, 2024. "Converging and evolving immuno-genomic routes toward immune escape in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Chandler D. Gatenbee & Ann-Marie Baker & Ryan O. Schenck & Maximilian Strobl & Jeffrey West & Margarida P. Neves & Sara Yakub Hasan & Eszter Lakatos & Pierre Martinez & William C. H. Cross & Marnix Ja, 2022. "Immunosuppressive niche engineering at the onset of human colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Zhiyuan Zheng & Ya-nan Li & Shanfen Jia & Mengting Zhu & Lijuan Cao & Min Tao & Jingting Jiang & Shenghua Zhan & Yongjing Chen & Ping-Jin Gao & Weiguo Hu & Ying Wang & Changshun Shao & Yufang Shi, 2021. "Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    16. Meirion Raymant & Yuliana Astuti & Laura Alvaro-Espinosa & Daniel Green & Valeria Quaranta & Gaia Bellomo & Mark Glenn & Vatshala Chandran-Gorner & Daniel H. Palmer & Christopher Halloran & Paula Ghan, 2024. "Macrophage-fibroblast JAK/STAT dependent crosstalk promotes liver metastatic outgrowth in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    17. Jingchao Li & Yu Luo & Ziling Zeng & Dong Cui & Jiaguo Huang & Chenjie Xu & Liping Li & Kanyi Pu & Ruiping Zhang, 2022. "Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Kaiyuan Wang & Yang Li & Xia Wang & Zhijun Zhang & Liping Cao & Xiaoyuan Fan & Bin Wan & Fengxiang Liu & Xuanbo Zhang & Zhonggui He & Yingtang Zhou & Dong Wang & Jin Sun & Xiaoyuan Chen, 2023. "Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Huiling Zhou & Dongsheng Tang & Yingjie Yu & Lingpu Zhang & Bin Wang & Johannes Karges & Haihua Xiao, 2023. "Theranostic imaging and multimodal photodynamic therapy and immunotherapy using the mTOR signaling pathway," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    20. W. Dean Pontius & Ellen S. Hong & Zachary J. Faber & Jeremy Gray & Craig D. Peacock & Ian Bayles & Katreya Lovrenert & Diana H. Chin & Berkley E. Gryder & Cynthia F. Bartels & Peter C. Scacheri, 2023. "Temporal chromatin accessibility changes define transcriptional states essential for osteosarcoma metastasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27078-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.