IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03473-9.html
   My bibliography  Save this article

Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer

Author

Listed:
  • Jutaek Nam

    (University of Michigan
    University of Michigan)

  • Sejin Son

    (University of Michigan
    University of Michigan)

  • Lukasz J. Ochyl

    (University of Michigan
    University of Michigan)

  • Rui Kuai

    (University of Michigan
    University of Michigan)

  • Anna Schwendeman

    (University of Michigan
    University of Michigan)

  • James J. Moon

    (University of Michigan
    University of Michigan
    University of Michigan)

Abstract

Photothermal therapy (PTT) is a promising cancer treatment modality, but PTT generally requires direct access to the source of light irradiation, thus precluding its utility against disseminated, metastatic tumors. Here, we demonstrate that PTT combined with chemotherapy can trigger potent anti-tumor immunity against disseminated tumors. Specifically, we have developed polydopamine-coated spiky gold nanoparticles as a new photothermal agent with extensive photothermal stability and efficiency. Strikingly, a single round of PTT combined with a sub-therapeutic dose of doxorubicin can elicit robust anti-tumor immune responses and eliminate local as well as untreated, distant tumors in >85% of animals bearing CT26 colon carcinoma. We also demonstrate their therapeutic efficacy against TC-1 submucosa-lung metastasis, a highly aggressive model for advanced head and neck squamous cell carcinoma (HNSCC). Our study sheds new light on a previously unrecognized, immunological facet of chemo-photothermal therapy and may lead to new therapeutic strategies against advanced cancer.

Suggested Citation

  • Jutaek Nam & Sejin Son & Lukasz J. Ochyl & Rui Kuai & Anna Schwendeman & James J. Moon, 2018. "Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03473-9
    DOI: 10.1038/s41467-018-03473-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03473-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03473-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoqing Shi & Miaomiao Luo & Qili Huang & Chendi Ding & Wenyan Wang & Yinglong Wu & Jingjing Luo & Chuchu Lin & Ting Chen & Xiaowei Zeng & Lin Mei & Yanli Zhao & Hongzhong Chen, 2023. "NIR-dye bridged human serum albumin reassemblies for effective photothermal therapy of tumor," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jia He & Chaoyu Wang & Xiao Fang & Junyao Li & Xueying Shen & Junxia Zhang & Cheng Peng & Hongjian Li & Sai Li & Jeffrey M. Karp & Rui Kuai, 2024. "Tuning the fluidity and protein corona of ultrasound-responsive liposomal nanovaccines to program T cell immunity in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Huapan Fang & Zhaopei Guo & Jie Chen & Lin Lin & Yingying Hu & Yanhui Li & Huayu Tian & Xuesi Chen, 2021. "Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03473-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.