IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56878-8.html
   My bibliography  Save this article

A glucose-enriched lung pre-metastatic niche triggered by matrix stiffness-tuned exosomal miRNAs in hepatocellular carcinoma

Author

Listed:
  • Yingying Zhao

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Hongmei Yu

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Jiajun Li

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Jiali Qian

    (Fudan University)

  • Miao Li

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Xi Zhang

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Mimi Wang

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Yaohui Wang

    (Fudan University Shanghai Cancer Center)

  • Yinying Dong

    (The Affiliated Hospital of Qingdao University)

  • Yang You

    (Fudan University)

  • Qiwen Zhou

    (Fudan University)

  • Dongmei Gao

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Yan Zhao

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Binbin Liu

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Rongxin Chen

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Zhenggang Ren

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

  • Zhiming Wang

    (Fudan University)

  • Kezhi Zhang

    (Nanjing Medical University)

  • Jiefeng Cui

    (Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education)

Abstract

Apart from the classic features, it is almost unknown whether there exist other new pathological features during pre-metastatic niche formation in hepatocellular carcinoma (HCC). Our previous works have highlighted the contribution of increased matrix stiffness to lung pre-metastatic niche formation and metastasis in HCC. However, whether increased matrix stiffness influences glucose metabolism and supply of lung pre-metastatic niche remains largely unclear. Here we uncover the underlying mechanism by which matrix stiffness-tuned exosomal miRNAs as the major contributor modulate glucose enrichment during lung pre-metastatic niche formation through decreasing the glucose uptake and consumption of lung fibroblasts and increasing angiogenesis and vascular permeability. Our findings suggest that glucose enrichment, a new characteristic of the lung pre-metastatic niche triggered by matrix stiffness-tuned exosomal miRNAs, is essential for the colonization and survival of metastatic tumor cells, as well as subsequent metastatic foci growth.

Suggested Citation

  • Yingying Zhao & Hongmei Yu & Jiajun Li & Jiali Qian & Miao Li & Xi Zhang & Mimi Wang & Yaohui Wang & Yinying Dong & Yang You & Qiwen Zhou & Dongmei Gao & Yan Zhao & Binbin Liu & Rongxin Chen & Zhengga, 2025. "A glucose-enriched lung pre-metastatic niche triggered by matrix stiffness-tuned exosomal miRNAs in hepatocellular carcinoma," Nature Communications, Nature, vol. 16(1), pages 1-26, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56878-8
    DOI: 10.1038/s41467-025-56878-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56878-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56878-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhicheng Zeng & Yuling Li & Yangjian Pan & Xiaoliang Lan & Fuyao Song & Jingbo Sun & Kun Zhou & Xiaolong Liu & Xiaoli Ren & Feifei Wang & Jinlong Hu & Xiaohui Zhu & Wei Yang & Wenting Liao & Guoxin Li, 2018. "Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. Joan Massagué & Anna C. Obenauf, 2016. "Metastatic colonization by circulating tumour cells," Nature, Nature, vol. 529(7586), pages 298-306, January.
    3. Tian Fang & Hongwei Lv & Guishuai Lv & Ting Li & Changzheng Wang & Qin Han & Lexing Yu & Bo Su & Linna Guo & Shanna Huang & Dan Cao & Liang Tang & Shanhua Tang & Mengchao Wu & Wen Yang & Hongyang Wang, 2018. "Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    4. Rosandra N. Kaplan & Rebecca D. Riba & Stergios Zacharoulis & Anna H. Bramley & Loïc Vincent & Carla Costa & Daniel D. MacDonald & David K. Jin & Koji Shido & Scott A. Kerns & Zhenping Zhu & Daniel Hi, 2005. "VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche," Nature, Nature, vol. 438(7069), pages 820-827, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Zhao & Kerui Wu & Sambad Sharma & Fei Xing & Shih-Ying Wu & Abhishek Tyagi & Ravindra Deshpande & Ravi Singh & Martin Wabitsch & Yin-Yuan Mo & Kounosuke Watabe, 2022. "Exosomal miR-1304-3p promotes breast cancer progression in African Americans by activating cancer-associated adipocytes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Zhiyuan Zheng & Ya-nan Li & Shanfen Jia & Mengting Zhu & Lijuan Cao & Min Tao & Jingting Jiang & Shenghua Zhan & Yongjing Chen & Ping-Jin Gao & Weiguo Hu & Ying Wang & Changshun Shao & Yufang Shi, 2021. "Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Hikaru Hayashi & Sayaka Seki & Takeshi Tomita & Masayoshi Kato & Norihiro Ashihara & Tokuhiro Chano & Hideki Sanjo & Miwa Kawade & Chenhui Yan & Hiroki Sakai & Hidenori Tomida & Miyuki Tanaka & Mai Iw, 2025. "Synthetic short mRNA prevents metastasis via innate-adaptive immunity," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    4. Rong Xiao & Deshu Xu & Meili Zhang & Zhanghua Chen & Li Cheng & Songjie Du & Mingfei Lu & Tonghai Zhou & Ruoyan Li & Fan Bai & Yue Huang, 2024. "Aneuploid embryonic stem cells drive teratoma metastasis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Huapan Fang & Zhaopei Guo & Jie Chen & Lin Lin & Yingying Hu & Yanhui Li & Huayu Tian & Xuesi Chen, 2021. "Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    6. Kaiyuan Wang & Xuanbo Zhang & Hao Ye & Xia Wang & Zhijin Fan & Qi Lu & Songhao Li & Jian Zhao & Shunzhe Zheng & Zhonggui He & Qianqian Ni & Xiaoyuan Chen & Jin Sun, 2023. "Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Etienne Baratchart & Sébastien Benzekry & Andreas Bikfalvi & Thierry Colin & Lindsay S Cooley & Raphäel Pineau & Emeline J Ribot & Olivier Saut & Wilfried Souleyreau, 2015. "Computational Modelling of Metastasis Development in Renal Cell Carcinoma," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-23, November.
    8. Lufei Sui & Suming Wang & Debolina Ganguly & Tyler P. El Rayes & Cecilie Askeland & Astrid Børretzen & Danielle Sim & Ole Johan Halvorsen & Gøril Knutsvik & Jarle Arnes & Sura Aziz & Svein Haukaas & W, 2022. "PRSS2 remodels the tumor microenvironment via repression of Tsp1 to stimulate tumor growth and progression," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Nieves Montenegro-Navarro & Claudia García-Báez & Melissa García-Caballero, 2023. "Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Yi Zhou & Peng Ke & Xiaoyan Bao & Honghui Wu & Yiyi Xia & Zhentao Zhang & Haiqing Zhong & Qi Dai & Linjie Wu & Tiantian Wang & Mengting Lin & Yaosheng Li & Xinchi Jiang & Qiyao Yang & Yiying Lu & Xinc, 2022. "Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Daniel G Weber & Georg Johnen & Oleksandr Bryk & Karl-Heinz Jöckel & Thomas Brüning, 2012. "Identification of miRNA-103 in the Cellular Fraction of Human Peripheral Blood as a Potential Biomarker for Malignant Mesothelioma – A Pilot Study," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-9, January.
    12. Yibing Han & Takeshi Tomita & Masayoshi Kato & Norihiro Ashihara & Yumiko Higuchi & Hisanori Matoba & Weiyi Wang & Hikaru Hayashi & Yuji Itoh & Satoshi Takahashi & Hiroshi Kurita & Jun Nakayama & Nobu, 2023. "Citrullinated fibrinogen-SAAs complex causes vascular metastagenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Niina M. Santio & Keerthana Ganesh & Pihla P. Kaipainen & Aleksi Halme & Fatemeh Seyednasrollah & Emad Arbash & Satu Hänninen & Riikka Kivelä & Olli Carpen & Pipsa Saharinen, 2024. "Endothelial Pim3 kinase protects the vascular barrier during lung metastasis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Didier Barradas-Bautista & Matias Alvarado-Mentado & Mark Agostino & Germinal Cocho, 2018. "Cancer growth and metastasis as a metaphor of Go gaming: An Ising model approach," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-18, May.
    15. Meirion Raymant & Yuliana Astuti & Laura Alvaro-Espinosa & Daniel Green & Valeria Quaranta & Gaia Bellomo & Mark Glenn & Vatshala Chandran-Gorner & Daniel H. Palmer & Christopher Halloran & Paula Ghan, 2024. "Macrophage-fibroblast JAK/STAT dependent crosstalk promotes liver metastatic outgrowth in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    16. Meiyan Qi & Yun Xia & Yanjun Wu & Zhuo Zhang & Xinyu Wang & Liying Lu & Cheng Dai & Yanan Song & Keying Xu & Weiwei Ji & Lixing Zhan, 2022. "Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Keyang Xu & Ai Fu & Zhaoyi Li & Liangbin Miao & Zhonghan Lou & Keying Jiang & Condon Lau & Tao Su & Tiejun Tong & Jianfeng Bao & Aiping Lyu & Hiu Yee Kwan, 2024. "Elevated extracellular matrix protein 1 in circulating extracellular vesicles supports breast cancer progression under obesity conditions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Huiling Zhou & Dongsheng Tang & Yingjie Yu & Lingpu Zhang & Bin Wang & Johannes Karges & Haihua Xiao, 2023. "Theranostic imaging and multimodal photodynamic therapy and immunotherapy using the mTOR signaling pathway," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    19. W. Dean Pontius & Ellen S. Hong & Zachary J. Faber & Jeremy Gray & Craig D. Peacock & Ian Bayles & Katreya Lovrenert & Diana H. Chin & Berkley E. Gryder & Cynthia F. Bartels & Peter C. Scacheri, 2023. "Temporal chromatin accessibility changes define transcriptional states essential for osteosarcoma metastasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Flavia A. Graca & Mamta Rai & Liam C. Hunt & Anna Stephan & Yong-Dong Wang & Brittney Gordon & Ruishan Wang & Giovanni Quarato & Beisi Xu & Yiping Fan & Myriam Labelle & Fabio Demontis, 2022. "The myokine Fibcd1 is an endogenous determinant of myofiber size and mitigates cancer-induced myofiber atrophy," Nature Communications, Nature, vol. 13(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56878-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.