IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29679-6.html
   My bibliography  Save this article

Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging

Author

Listed:
  • Yue Yan

    (Peking University
    Peking University)

  • Binlong Chen

    (Peking University
    Peking University)

  • Qingqing Yin

    (Peking University)

  • Zenghui Wang

    (Peking University)

  • Ye Yang

    (Peking University)

  • Fangjie Wan

    (Peking University)

  • Yaoqi Wang

    (Peking University)

  • Mingmei Tang

    (Peking University)

  • Heming Xia

    (Peking University)

  • Meifang Chen

    (Peking University)

  • Jianxiong Liu

    (Peking University)

  • Siling Wang

    (Shenyang Pharmaceutical University)

  • Qiang Zhang

    (Peking University
    Peking University)

  • Yiguang Wang

    (Peking University
    Peking University)

Abstract

Efficient delivery of payload to intracellular targets has been identified as the central principle for nanomedicine development, while the extracellular targets are equally important for cancer treatment. Notably, the contribution of extracellularly distributed nanoparticles to therapeutic outcome is far from being understood. Herein, we develop a pH/light dual-responsive monochromatic ratiometric imaging nanoparticle (MRIN), which functions through sequentially lighting up the intracellular and extracellular fluorescence signals by acidic endocytic pH and near-infrared light. Enabled by MRIN nanotechnology, we accurately quantify the extracellular and intracellular distribution of nanoparticles in several tumor models, which account for 65–80% and 20–35% of total tumor exposure, respectively. Given that the majority of nanoparticles are trapped in extracellular regions, we successfully dissect the contribution of extracellularly distributed nanophotosensitizer to therapeutic efficacy, thereby maximize the treatment outcome. Our study provides key strategies to precisely quantify nanocarrier microdistribtion and engineer multifunctional nanomedicines for efficient theranostics.

Suggested Citation

  • Yue Yan & Binlong Chen & Qingqing Yin & Zenghui Wang & Ye Yang & Fangjie Wan & Yaoqi Wang & Mingmei Tang & Heming Xia & Meifang Chen & Jianxiong Liu & Siling Wang & Qiang Zhang & Yiguang Wang, 2022. "Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29679-6
    DOI: 10.1038/s41467-022-29679-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29679-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29679-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Tang & Zhen Yang & Liangcan He & Liming Deng & Parinaz Fathi & Shoujun Zhu & Ling Li & Bo Shen & Zhantong Wang & Orit Jacobson & Jibin Song & Jianhua Zou & Ping Hu & Min Wang & Jing Mu & Yaya Chen, 2021. "A hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Yang Li & Tian Zhao & Chensu Wang & Zhiqiang Lin & Gang Huang & Baran D. Sumer & Jinming Gao, 2016. "Molecular basis of cooperativity in pH-triggered supramolecular self-assembly," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    3. Burcu Aslan & Paloma Monroig & Ming-Chuan Hsu & Guillermo Armaiz Pena & Cristian Rodriguez-Aguayo & Vianey Gonzalez-Villasana & Rajesha Rupaimoole & Archana Sidalaghatta Nagaraja & Selanere Mangala & , 2015. "The ZNF304-integrin axis protects against anoikis in cancer," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    4. Qian Chen & Ligeng Xu & Chao Liang & Chao Wang & Rui Peng & Zhuang Liu, 2016. "Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Li & Tuying Yong & Zhaohan Wei & Nana Bie & Xiaoqiong Zhang & Guiting Zhan & Jianye Li & Jiaqi Qin & Jingjing Yu & Bixiang Zhang & Lu Gan & Xiangliang Yang, 2022. "Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Li, Zhijing & Lei, Hui & Kan, Ankang & Xie, Huaqing & Yu, Wei, 2021. "Photothermal applications based on graphene and its derivatives: A state-of-the-art review," Energy, Elsevier, vol. 216(C).
    3. Huapan Fang & Zhaopei Guo & Jie Chen & Lin Lin & Yingying Hu & Yanhui Li & Huayu Tian & Xuesi Chen, 2021. "Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    4. Kaiyuan Wang & Xuanbo Zhang & Hao Ye & Xia Wang & Zhijin Fan & Qi Lu & Songhao Li & Jian Zhao & Shunzhe Zheng & Zhonggui He & Qianqian Ni & Xiaoyuan Chen & Jin Sun, 2023. "Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Rong Sun & Mingzhu Liu & Jianping Lu & Binbin Chu & Yunmin Yang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Jian Cheng & Guihai Gan & Shaoqiu Zheng & Guoying Zhang & Chen Zhu & Shiyong Liu & Jinming Hu, 2023. "Biofilm heterogeneity-adaptive photoredox catalysis enables red light-triggered nitric oxide release for combating drug-resistant infections," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Kaiyuan Wang & Yang Li & Xia Wang & Zhijun Zhang & Liping Cao & Xiaoyuan Fan & Bin Wan & Fengxiang Liu & Xuanbo Zhang & Zhonggui He & Yingtang Zhou & Dong Wang & Jin Sun & Xiaoyuan Chen, 2023. "Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29679-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.