IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40439-y.html
   My bibliography  Save this article

Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy

Author

Listed:
  • Tianqun Lang

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences
    Yantai Institute of Materia Medica)

  • Runqi Zhu

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiao Zhu

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenlu Yan

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yu Li

    (Nanjing University of Chinese Medicine)

  • Yihui Zhai

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ting Wu

    (Nanjing Medical University)

  • Xin Huang

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qi Yin

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences
    Yantai Institute of Materia Medica
    University of Chinese Academy of Sciences)

  • Yaping Li

    (Shanghai Institute of Materia Medica, Chinese Academy of Sciences
    Yantai Institute of Materia Medica
    University of Chinese Academy of Sciences
    Nanjing University of Chinese Medicine)

Abstract

Colorectal cancer (CRC) therapy efficiency can be influenced by the microbiota in the gastrointestinal tract. Compared with traditional intervention, prebiotics delivery into the gut is a more controllable method for gut microbiota modulatory therapy. Capecitabine (Cap), the first-line chemotherapeutic agent for CRC, lacks a carrier that can prolong its half-life. Here, we construct a Cap-loaded nanoparticle using the prebiotic xylan-stearic acid conjugate (SCXN). The oral administration of SCXN delays the drug clearance in the blood and increases the intra-tumoral Cap concentration in the CRC mouse model. SCXN also facilitates the probiotic proliferation and short chain fatty acid production. Compared with free Cap, SCXN enhances the anti-tumor immunity and increases the tumor inhibition rate from 5.29 to 71.78%. SCXN exhibits good biocompatibility and prolongs the median survival time of CRC mice from 14 to 33.5 d. This prebiotics-based nanoparticle provides a promising CRC treatment by combining gut microbiota modulation and chemotherapy.

Suggested Citation

  • Tianqun Lang & Runqi Zhu & Xiao Zhu & Wenlu Yan & Yu Li & Yihui Zhai & Ting Wu & Xin Huang & Qi Yin & Yaping Li, 2023. "Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40439-y
    DOI: 10.1038/s41467-023-40439-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40439-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40439-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wantong Song & Limei Shen & Ying Wang & Qi Liu & Tyler J. Goodwin & Jingjing Li & Olekasandra Dorosheva & Tianzhou Liu & Rihe Liu & Leaf Huang, 2018. "Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Wenjing Yang & Tianming Yu & Xiangsheng Huang & Anthony J. Bilotta & Leiqi Xu & Yao Lu & Jiaren Sun & Fan Pan & Jia Zhou & Wenbo Zhang & Suxia Yao & Craig L. Maynard & Nagendra Singh & Sara M. Dann & , 2020. "Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    3. Matthew A. Jackson & Serena Verdi & Maria-Emanuela Maxan & Cheol Min Shin & Jonas Zierer & Ruth C. E. Bowyer & Tiphaine Martin & Frances M. K. Williams & Cristina Menni & Jordana T. Bell & Tim D. Spec, 2018. "Gut microbiota associations with common diseases and prescription medications in a population-based cohort," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Yan Li & Roberto Tinoco & Lisa Elmén & Igor Segota & Yibo Xian & Yu Fujita & Avinash Sahu & Raphy Zarecki & Kerrie Marie & Yongmei Feng & Ali Khateb & Dennie T. Frederick & Shiri K. Ashkenazi & Hyungs, 2019. "Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5−/− mice," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanlin Wang & Yaqian Han & Chenhui Yang & Tiancheng Bai & Chenggang Zhang & Zhaotong Wang & Ye Sun & Ying Hu & Flemming Besenbacher & Chunying Chen & Miao Yu, 2024. "Long-term relapse-free survival enabled by integrating targeted antibacteria in antitumor treatment," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadid M. Algavi & Elhanan Borenstein, 2023. "A data-driven approach for predicting the impact of drugs on the human microbiome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Joonatan Palmu & Leo Lahti & Teemu Niiranen, 2021. "Targeting Gut Microbiota to Treat Hypertension: A Systematic Review," IJERPH, MDPI, vol. 18(3), pages 1-14, January.
    3. Lu Jia & Yiyang Jiang & Lili Wu & Jingfei Fu & Juan Du & Zhenhua Luo & Lijia Guo & Junji Xu & Yi Liu, 2024. "Porphyromonas gingivalis aggravates colitis via a gut microbiota-linoleic acid metabolism-Th17/Treg cell balance axis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Oliver Aasmets & Kertu Liis Krigul & Kreete Lüll & Andres Metspalu & Elin Org, 2022. "Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Huapan Fang & Zhaopei Guo & Jie Chen & Lin Lin & Yingying Hu & Yanhui Li & Huayu Tian & Xuesi Chen, 2021. "Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    6. Louise Grahnemo & Maria Nethander & Eivind Coward & Maiken Elvestad Gabrielsen & Satya Sree & Jean-Marc Billod & Klara Sjögren & Lars Engstrand & Koen F. Dekkers & Tove Fall & Arnulf Langhammer & Kris, 2023. "Identification of three bacterial species associated with increased appendicular lean mass: the HUNT study," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Stephen J. Gaudino & Ankita Singh & Huakang Huang & Jyothi Padiadpu & Makheni Jean-Pierre & Cody Kempen & Tej Bahadur & Kiyoshi Shiomitsu & Richard Blumberg & Kenneth R. Shroyer & Semir Beyaz & Natali, 2024. "Intestinal IL-22RA1 signaling regulates intrinsic and systemic lipid and glucose metabolism to alleviate obesity-associated disorders," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Jonathan B. Lynch & Erika L. Gonzalez & Kayli Choy & Kym F. Faull & Talia Jewell & Abelardo Arellano & Jennifer Liang & Kristie B. Yu & Jorge Paramo & Elaine Y. Hsiao, 2023. "Gut microbiota Turicibacter strains differentially modify bile acids and host lipids," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Doris Vandeputte & Lindsey Commer & Raul Y. Tito & Gunter Kathagen & João Sabino & Séverine Vermeire & Karoline Faust & Jeroen Raes, 2021. "Temporal variability in quantitative human gut microbiome profiles and implications for clinical research," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Courtney Hoskinson & Darlene L. Y. Dai & Kate L. Bel & Allan B. Becker & Theo J. Moraes & Piushkumar J. Mandhane & B. Brett Finlay & Elinor Simons & Anita L. Kozyrskyj & Meghan B. Azad & Padmaja Subba, 2023. "Delayed gut microbiota maturation in the first year of life is a hallmark of pediatric allergic disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40439-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.