IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v12y2022i2d10.1038_s41558-021-01272-7.html
   My bibliography  Save this article

Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard

Author

Listed:
  • Avantika Gori

    (Princeton University)

  • Ning Lin

    (Princeton University)

  • Dazhi Xi

    (Princeton University)

  • Kerry Emanuel

    (Massachusetts Institute of Technology)

Abstract

Tropical cyclones (TCs) are drivers of extreme rainfall and surge, but the current and future TC rainfall–surge joint hazard has not been well quantified. Using a physics-based approach to simulate TC rainfall and storm tides, we show drastic increases in the joint hazard from historical to projected future (SSP5–8.5) conditions. The frequency of joint extreme events (exceeding both hazards’ historical 100-year levels) may increase by 7–36-fold in the southern US and 30–195-fold in the Northeast by 2100. This increase in joint hazard is induced by sea-level rise and TC climatology change; the relative contribution of TC climatology change is higher than that of sea-level rise for 96% of the coast, largely due to rainfall increases. Increasing storm intensity and decreasing translation speed are the main TC change factors that cause higher rainfall and storm tides and up to 25% increase in their dependence.

Suggested Citation

  • Avantika Gori & Ning Lin & Dazhi Xi & Kerry Emanuel, 2022. "Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard," Nature Climate Change, Nature, vol. 12(2), pages 171-178, February.
  • Handle: RePEc:nat:natcli:v:12:y:2022:i:2:d:10.1038_s41558-021-01272-7
    DOI: 10.1038/s41558-021-01272-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-01272-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-01272-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlynn Fagnant & Avantika Gori & Antonia Sebastian & Philip B. Bedient & Katherine B. Ensor, 2020. "Characterizing spatiotemporal trends in extreme precipitation in Southeast Texas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1597-1621, November.
    2. Reza Marsooli & Ning Lin & Kerry Emanuel & Kairui Feng, 2019. "Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Christopher M. Little & Radley M. Horton & Robert E. Kopp & Michael Oppenheimer & Gabriel A. Vecchi & Gabriele Villarini, 2015. "Joint projections of US East Coast sea level and storm surge," Nature Climate Change, Nature, vol. 5(12), pages 1114-1120, December.
    4. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kui Xu & Chenyue Wang & Lingling Bin, 2023. "Compound flood models in coastal areas: a review of methods and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 469-496, March.
    2. Zhenshan Chen & Charles A. Towe, 2024. "Pricing Coastal Amenities and Flood Hazards," Land Economics, University of Wisconsin Press, vol. 100(1), pages 109-126.
    3. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    4. Thomas R. Knutson & Joseph J. Sirutis & Morris A. Bender & Robert E. Tuleya & Benjamin A. Schenkel, 2022. "Dynamical downscaling projections of late twenty-first-century U.S. landfalling hurricane activity," Climatic Change, Springer, vol. 171(3), pages 1-23, April.
    5. Hong, Xu & Wan, Zhiqiang & Chen, Jianbing, 2023. "Parallel assessment of the tropical cyclone wind hazard at multiple locations using the probability density evolution method integrated with the change of probability measure," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Alam, Md. Shaharier & Kim, Kyusik & Horner, Mark W. & Alisan, Onur & Antwi, Richard & Ozguven, Eren Erman, 2024. "Large-scale modeling of hurricane flooding and disrupted infrastructure impacts on accessibility to critical facilities," Journal of Transport Geography, Elsevier, vol. 116(C).
    7. Peihua Qin & Zhenghui Xie & Binghao Jia & Rui Han & Buchun Liu, 2023. "Predicting Changes in Population Exposure to Precipitation Extremes over Beijing–Tianjin–Hebei Urban Agglomeration with Regional Climate Model RegCM4 on a Convection-Permitting Scale," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    8. Pavan Harika Raavi & Jung-Eun Chu & Axel Timmermann & Sun-Seon Lee & Kevin J. E. Walsh, 2023. "Moisture control of tropical cyclones in high-resolution simulations of paleoclimate and future climate," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Hazem Krichene & Thomas Vogt & Franziska Piontek & Tobias Geiger & Christof Schötz & Christian Otto, 2023. "The social costs of tropical cyclones," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    3. Reza Marsooli & Ning Lin, 2020. "Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York," Climatic Change, Springer, vol. 163(4), pages 2153-2171, December.
    4. Qian Ke & Jiangshan Yin & Jeremy D. Bricker & Nicholas Savage & Erasmo Buonomo & Qinghua Ye & Paul Visser & Guangtao Dong & Shuai Wang & Zhan Tian & Laixiang Sun & Ralf Toumi & Sebastiaan N. Jonkman, 2021. "An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 671-703, October.
    5. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    6. Yuki Miura & Huda Qureshi & Chanyang Ryoo & Philip C. Dinenis & Jiao Li & Kyle T. Mandli & George Deodatis & Daniel Bienstock & Heather Lazrus & Rebecca Morss, 2021. "A methodological framework for determining an optimal coastal protection strategy against storm surges and sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1821-1843, June.
    7. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    8. Byungdoo Kim & David L. Kay & Jonathon P. Schuldt, 2021. "Will I have to move because of climate change? Perceived likelihood of weather- or climate-related relocation among the US public," Climatic Change, Springer, vol. 165(1), pages 1-8, March.
    9. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    10. Junli Xu & Yuhong Zhang & Xianqing Lv & Qiang Liu, 2019. "Inversion of Wind-Stress Drag Coefficient in Simulating Storm Surges by Means of Regularization Technique," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    11. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    12. Austin Becker & Michele Acciaro & Regina Asariotis & Edgard Cabrera & Laurent Cretegny & Philippe Crist & Miguel Esteban & Andrew Mather & Steve Messner & Susumu Naruse & Adolf Ng & Stefan Rahmstorf &, 2013. "A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society," Climatic Change, Springer, vol. 120(4), pages 683-695, October.
    13. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    14. Nicholas Santella, 2023. "Climate related trends in US hazardous material releases caused by natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 735-756, January.
    15. Vijay S. Limaye, 2021. "Making the climate crisis personal through a focus on human health," Climatic Change, Springer, vol. 166(3), pages 1-11, June.
    16. Zhuo Zhang & Changsheng Chen & Zhiyao Song & Dong Zhang & Di Hu & Fei Guo, 2020. "A FVCOM study of the potential coastal flooding in apponagansett bay and clarks cove, Dartmouth Town (MA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2787-2809, September.
    17. Barbora Šedová & Lucia Čizmaziová & Athene Cook, 2021. "A meta-analysis of climate migration literature," CEPA Discussion Papers 29, Center for Economic Policy Analysis.
    18. James Neumann & Kerry Emanuel & Sai Ravela & Lindsay Ludwig & Paul Kirshen & Kirk Bosma & Jeremy Martinich, 2015. "Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy," Climatic Change, Springer, vol. 129(1), pages 337-349, March.
    19. Lee, Ji Yun & Ellingwood, Bruce R., 2017. "A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 100-107.
    20. Wilmer Rey & E. Tonatiuh Mendoza & Paulo Salles & Keqi Zhang & Yi-Chen Teng & Miguel A. Trejo-Rangel & Gemma L. Franklin, 2019. "Hurricane flood risk assessment for the Yucatan and Campeche State coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1041-1065, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:12:y:2022:i:2:d:10.1038_s41558-021-01272-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.