IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v5y2015i12d10.1038_nclimate2801.html
   My bibliography  Save this article

Joint projections of US East Coast sea level and storm surge

Author

Listed:
  • Christopher M. Little

    (Atmospheric and Environmental Research, Inc.)

  • Radley M. Horton

    (Center for Climate Systems Research, Columbia University and NASA Goddard Institute of Space Studies)

  • Robert E. Kopp

    (Rutgers Energy Institute, and Institute of Earth, Ocean & Atmospheric Sciences, Rutgers University)

  • Michael Oppenheimer

    (Woodrow Wilson School of Public and International Affairs, Princeton University
    Princeton University)

  • Gabriel A. Vecchi

    (National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory)

  • Gabriele Villarini

    (IIHR-Hydroscience & Engineering, The University of Iowa)

Abstract

Future coastal flood risk will be strongly influenced by sea-level rise (SLR) and changes in the frequency and intensity of tropical cyclones. These two factors are generally considered independently. Here, we assess twenty-first century changes in the coastal hazard for the US East Coast using a flood index (FI) that accounts for changes in flood duration and magnitude driven by SLR and changes in power dissipation index (PDI, an integrated measure of tropical cyclone intensity, frequency and duration). Sea-level rise and PDI are derived from representative concentration pathway (RCP) simulations of 15 atmosphere–ocean general circulation models (AOGCMs). By 2080–2099, projected changes in the FI relative to 1986–2005 are substantial and positively skewed: a 10th–90th percentile range 4–75 times higher for RCP 2.6 and 35–350 times higher for RCP 8.5. High-end FI projections are driven by three AOGCMs that project the largest increases in SLR, PDI and upper ocean temperatures. Changes in PDI are particularly influential if their intra-model correlation with SLR is included, increasing the RCP 8.5 90th percentile FI by a further 25%. Sea-level rise from other, possibly correlated, climate processes (for example, ice sheet and glacier mass changes) will further increase coastal flood risk and should be accounted for in comprehensive assessments.

Suggested Citation

  • Christopher M. Little & Radley M. Horton & Robert E. Kopp & Michael Oppenheimer & Gabriel A. Vecchi & Gabriele Villarini, 2015. "Joint projections of US East Coast sea level and storm surge," Nature Climate Change, Nature, vol. 5(12), pages 1114-1120, December.
  • Handle: RePEc:nat:natcli:v:5:y:2015:i:12:d:10.1038_nclimate2801
    DOI: 10.1038/nclimate2801
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate2801
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate2801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avantika Gori & Ning Lin & Dazhi Xi & Kerry Emanuel, 2022. "Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard," Nature Climate Change, Nature, vol. 12(2), pages 171-178, February.
    2. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    3. Denis L. Volkov & Kate Zhang & William E. Johns & Joshua K. Willis & Will Hobbs & Marlos Goes & Hong Zhang & Dimitris Menemenlis, 2023. "Atlantic meridional overturning circulation increases flood risk along the United States southeast coast," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Swen Jullien & Jérôme Aucan & Elodie Kestenare & Matthieu Lengaigne & Christophe Menkes, 2024. "Unveiling the global influence of tropical cyclones on extreme waves approaching coastal areas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    6. Shi Xianwu & Han Ziqiang & Fang Jiayi & Tan Jun & Guo Zhixing & Sun Zhilin, 2020. "Assessment and zonation of storm surge hazards in the coastal areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 39-48, January.
    7. Pramod K. Singh & Konstantinos Papageorgiou & Harpalsinh Chudasama & Elpiniki I. Papageorgiou, 2019. "Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    8. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    9. Robert L. Ceres & Chris E. Forest & Klaus Keller, 2017. "Understanding the detectability of potential changes to the 100-year peak storm surge," Climatic Change, Springer, vol. 145(1), pages 221-235, November.
    10. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:5:y:2015:i:12:d:10.1038_nclimate2801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.