IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i1d10.1007_s11069-022-05683-3.html
   My bibliography  Save this article

Compound flood models in coastal areas: a review of methods and uncertainty analysis

Author

Listed:
  • Kui Xu

    (Tianjin University)

  • Chenyue Wang

    (Tianjin University)

  • Lingling Bin

    (Tianjin Normal University)

Abstract

In the context of climate change and urbanization, flood becomes one of the most important threats to human life, health, and property. Coastal areas gathering large numbers of population, capital, and industries are vulnerable to suffering from the compound floods caused by hydrological and oceanic processes. The disaster mechanisms of compound floods are more complex, and the consequences are even more serious. Based on the existing research results, this article sorts out the main disaster mechanisms of compound floods in coastal areas and explains the main methods, including using statistical models to study the dependence between flood drivers or joint probability and numerical models to simulate compound flood inundation, and presents the characteristics of different methods. We also discuss the advantages and disadvantages of different models and analyze their uncertainties. Current research seldom considers the rainfall-runoff-storm surge compound flood and the effect of climate change. In addition, there are only a few kinds of literature that integrate statistical models and numerical models to investigate compound flood hazard. Uncertainties in compound flood study methods are also less considered. Future investigation should focus on the characteristics and uncertainties of different models and consider the impact of climate change on compound floods. These will help to fully understand compound floods, research models, and provide effective opinions for flood management in coastal areas.

Suggested Citation

  • Kui Xu & Chenyue Wang & Lingling Bin, 2023. "Compound flood models in coastal areas: a review of methods and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 469-496, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05683-3
    DOI: 10.1007/s11069-022-05683-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05683-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05683-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han Tang & Steven Chien & Marouane Temimi & Cheryl Blain & Qu Ke & Liuhui Zhao & Simon Kraatz, 2013. "Vulnerability of population and transportation infrastructure at the east bank of Delaware Bay due to coastal flooding in sea-level rise conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 141-163, October.
    2. Avantika Gori & Ning Lin & Dazhi Xi & Kerry Emanuel, 2022. "Publisher Correction: Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard," Nature Climate Change, Nature, vol. 12(5), pages 491-491, May.
    3. Avantika Gori & Ning Lin & Dazhi Xi & Kerry Emanuel, 2022. "Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard," Nature Climate Change, Nature, vol. 12(2), pages 171-178, February.
    4. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    5. Robert J. Nicholls & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios T. Vafeidis & Benoit Meyssignac & Susan E. Hanson & Jan-Ludolf Merkens & Jiayi Fang, 2021. "A global analysis of subsidence, relative sea-level change and coastal flood exposure," Nature Climate Change, Nature, vol. 11(4), pages 338-342, April.
    6. S. Pfahl & P. A. O’Gorman & E. M. Fischer, 2017. "Understanding the regional pattern of projected future changes in extreme precipitation," Nature Climate Change, Nature, vol. 7(6), pages 423-427, June.
    7. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    8. Michael Leonard & Seth Westra & Aloke Phatak & Martin Lambert & Bart van den Hurk & Kathleen McInnes & James Risbey & Sandra Schuster & Doerte Jakob & Mark Stafford‐Smith, 2014. "A compound event framework for understanding extreme impacts," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(1), pages 113-128, January.
    9. Hongshi Xu & Kui Xu & Lingling Bin & Jijian Lian & Chao Ma, 2018. "Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China," IJERPH, MDPI, vol. 15(7), pages 1-20, June.
    10. B. Winter & K. Schneeberger & M. Huttenlau & J. Stötter, 2018. "Sources of uncertainty in a probabilistic flood risk model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 431-446, March.
    11. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    12. Ping Ai & Dingbo Yuan & Chuansheng Xiong, 2018. "Copula-Based Joint Probability Analysis of Compound Floods from Rainstorm and Typhoon Surge: A Case Study of Jiangsu Coastal Areas, China," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    2. Alam, Md. Shaharier & Kim, Kyusik & Horner, Mark W. & Alisan, Onur & Antwi, Richard & Ozguven, Eren Erman, 2024. "Large-scale modeling of hurricane flooding and disrupted infrastructure impacts on accessibility to critical facilities," Journal of Transport Geography, Elsevier, vol. 116(C).
    3. Pavan Harika Raavi & Jung-Eun Chu & Axel Timmermann & Sun-Seon Lee & Kevin J. E. Walsh, 2023. "Moisture control of tropical cyclones in high-resolution simulations of paleoclimate and future climate," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Panagiota Galiatsatou & Christos Makris & Panayotis Prinos & Dimitrios Kokkinos, 2019. "Nonstationary joint probability analysis of extreme marine variables to assess design water levels at the shoreline in a changing climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1051-1089, September.
    5. Zhenshan Chen & Charles A. Towe, 2024. "Pricing Coastal Amenities and Flood Hazards," Land Economics, University of Wisconsin Press, vol. 100(1), pages 109-126.
    6. Dominik Paprotny & Michalis I. Vousdoukas & Oswaldo Morales-Nápoles & Sebastiaan N. Jonkman & Luc Feyen, 2020. "Pan-European hydrodynamic models and their ability to identify compound floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 933-957, April.
    7. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Kai Tao & Jian Fang & Wentao Yang & Jiayi Fang & Baoyin Liu, 2023. "Characterizing compound floods from heavy rainfall and upstream–downstream extreme flow in middle Yangtze River from 1980 to 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1097-1114, January.
    9. Mark C. Quigley & Luke G. Bennetts & Patricia Durance & Petra M. Kuhnert & Mark D. Lindsay & Keith G. Pembleton & Melanie E. Roberts & Christopher J. White, 2019. "The provision and utility of science and uncertainty to decision-makers: earth science case studies," Environment Systems and Decisions, Springer, vol. 39(3), pages 307-348, September.
    10. Hong, Xu & Wan, Zhiqiang & Chen, Jianbing, 2023. "Parallel assessment of the tropical cyclone wind hazard at multiple locations using the probability density evolution method integrated with the change of probability measure," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Bevacqua, Emanuele & Maraun, Douglas & Vousdoukas, Michalis I. & Voukouvalas, Evangelos & Vrac, Mathieu & Mentaschi, Lorenzo & Widmann, Martin, 2018. "Higher potential compound flood risk in Northern Europe under anthropogenic climate change," Earth Arxiv ta764, Center for Open Science.
    12. Hongshi Xu & Kui Xu & Tianye Wang & Wanjie Xue, 2022. "Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    13. Thomas R. Knutson & Joseph J. Sirutis & Morris A. Bender & Robert E. Tuleya & Benjamin A. Schenkel, 2022. "Dynamical downscaling projections of late twenty-first-century U.S. landfalling hurricane activity," Climatic Change, Springer, vol. 171(3), pages 1-23, April.
    14. Hao Chen & Zongxue Xu & Ji Chen & Yang Liu & Peng Li, 2023. "Joint Risk Analysis of Extreme Rainfall and High Tide Level Based on Extreme Value Theory in Coastal Area," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
    15. Peng Gao & Wei Gao & Nan Ke, 2021. "Assessing the impact of flood inundation dynamics on an urban environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1047-1072, October.
    16. Hazem Krichene & Thomas Vogt & Franziska Piontek & Tobias Geiger & Christof Schötz & Christian Otto, 2023. "The social costs of tropical cyclones," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Peihua Qin & Zhenghui Xie & Binghao Jia & Rui Han & Buchun Liu, 2023. "Predicting Changes in Population Exposure to Precipitation Extremes over Beijing–Tianjin–Hebei Urban Agglomeration with Regional Climate Model RegCM4 on a Convection-Permitting Scale," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    18. Selasi YAO AVORNYO & Kwasi APPEANING ADDO & Pietro TEATINI & Philip S.J. MINDERHOUD & Marie-Noëlle WOILLEZ, 2023. "Vulnerability of Ghana’s Coast to Relative Sea-level Rise: A Scoping Review," Working Paper c0e9d81f-7c77-47ca-ba56-a, Agence française de développement.
    19. Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
    20. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05683-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.