IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i1d10.1007_s11069-021-04853-z.html
   My bibliography  Save this article

An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai

Author

Listed:
  • Qian Ke

    (Delft University of Technology)

  • Jiangshan Yin

    (Nanjing Hydraulic Research Institute)

  • Jeremy D. Bricker

    (Delft University of Technology
    University of Michigan)

  • Nicholas Savage

    (Met Office Hadley Centre)

  • Erasmo Buonomo

    (Met Office Hadley Centre)

  • Qinghua Ye

    (Delft University of Technology
    Deltares)

  • Paul Visser

    (Delft University of Technology)

  • Guangtao Dong

    (Shanghai Meteorological Service)

  • Shuai Wang

    (Imperial College London)

  • Zhan Tian

    (Southern University of Science and Technology)

  • Laixiang Sun

    (University of Maryland
    SOAS University of London)

  • Ralf Toumi

    (Imperial College London)

  • Sebastiaan N. Jonkman

    (Delft University of Technology)

Abstract

Climate change leads to sea level rise worldwide, as well as increases in the intensity and frequency of tropical cyclones (TCs). Storm surge induced by TC’s, together with spring tides, threatens to cause failure of flood defenses, resulting in massive flooding in low-lying coastal areas. However, limited research has been done on the combined effects of the increasing intensity of TCs and sea level rise on the characteristics of coastal flooding due to the failure of sea dikes. This paper investigates the spatial variation of coastal flooding due to the failure of sea dikes subject to past and future TC climatology and sea level rise, via a case study of a low-lying deltaic city- Shanghai, China. Using a hydrodynamic model and a spectral wave model, storm tide and wave parameters were calculated as input for an empirical model of overtopping discharge rate. The results show that the change of storm climatology together with relative sea level rise (RSLR) largely exacerbates the coastal hazard for Shanghai in the future, in which RSLR is likely to have a larger effect than the TC climatology change on future coastal flooding in Shanghai. In addition, the coastal flood hazard will increase to a large extent in terms of the flood water volume for each corresponding given return period. The approach developed in this paper can also be utilized to investigate future flood risk for other low-lying coastal regions.

Suggested Citation

  • Qian Ke & Jiangshan Yin & Jeremy D. Bricker & Nicholas Savage & Erasmo Buonomo & Qinghua Ye & Paul Visser & Guangtao Dong & Shuai Wang & Zhan Tian & Laixiang Sun & Ralf Toumi & Sebastiaan N. Jonkman, 2021. "An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 671-703, October.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04853-z
    DOI: 10.1007/s11069-021-04853-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04853-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04853-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James P. Kossin, 2018. "Author Correction: A global slowdown of tropical-cyclone translation speed," Nature, Nature, vol. 564(7735), pages 11-16, December.
    2. Nga Thi Thanh Pham & Quang Hong Nguyen & Anh Duc Ngo & Hang Thi Thu Le & Cong Tien Nguyen, 2018. "Investigating the impacts of typhoon-induced floods on the agriculture in the central region of Vietnam by using hydrological models and satellite data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 189-204, May.
    3. Reza Marsooli & Ning Lin & Kerry Emanuel & Kairui Feng, 2019. "Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. James P. Kossin & Kerry A. Emanuel & Gabriel A. Vecchi, 2014. "The poleward migration of the location of tropical cyclone maximum intensity," Nature, Nature, vol. 509(7500), pages 349-352, May.
    5. Jonathan D. Woodruff & Jennifer L. Irish & Suzana J. Camargo, 2013. "Coastal flooding by tropical cyclones and sea-level rise," Nature, Nature, vol. 504(7478), pages 44-52, December.
    6. Kieran T. Bhatia & Gabriel A. Vecchi & Thomas R. Knutson & Hiroyuki Murakami & James Kossin & Keith W. Dixon & Carolyn E. Whitlock, 2019. "Author Correction: Recent increases in tropical cyclone intensification rates," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    7. Susan Hanson & Robert Nicholls & N. Ranger & S. Hallegatte & J. Corfee-Morlot & C. Herweijer & J. Chateau, 2011. "A global ranking of port cities with high exposure to climate extremes," Climatic Change, Springer, vol. 104(1), pages 89-111, January.
    8. Jun Wang & Wei Gao & Shiyuan Xu & Lizhong Yu, 2012. "Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China," Climatic Change, Springer, vol. 115(3), pages 537-558, December.
    9. Kieran T. Bhatia & Gabriel A. Vecchi & Thomas R. Knutson & Hiroyuki Murakami & James Kossin & Keith W. Dixon & Carolyn E. Whitlock, 2019. "Recent increases in tropical cyclone intensification rates," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    10. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    11. Kieran T. Bhatia & Gabriel A. Vecchi & Thomas R. Knutson & Hiroyuki Murakami & James Kossin & Keith W. Dixon & Carolyn E. Whitlock, 2019. "Author Correction: Recent increases in tropical cyclone intensification rates," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    12. James P. Kossin, 2018. "A global slowdown of tropical-cyclone translation speed," Nature, Nature, vol. 558(7708), pages 104-107, June.
    13. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    14. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.
    15. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jian Shi & Xiangbo Feng & Ralf Toumi & Chi Zhang & Kevin I. Hodges & Aifeng Tao & Wei Zhang & Jinhai Zheng, 2024. "Global increase in tropical cyclone ocean surface waves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Anil Deo & Savin S. Chand & R. Duncan McIntosh & Bipen Prakash & Neil J. Holbrook & Andrew Magee & Alick Haruhiru & Philip Malsale, 2022. "Severe tropical cyclones over southwest Pacific Islands: economic impacts and implications for disaster risk management," Climatic Change, Springer, vol. 172(3), pages 1-23, June.
    4. Kieran Bhatia & Alexander Baker & Wenchang Yang & Gabriel Vecchi & Thomas Knutson & Hiroyuki Murakami & James Kossin & Kevin Hodges & Keith Dixon & Benjamin Bronselaer & Carolyn Whitlock, 2022. "A potential explanation for the global increase in tropical cyclone rapid intensification," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    6. Chin‐Hsien Yu & Bruce A. McCarl & Jian‐Da Zhu, 2022. "Market response to typhoons: The role of information and expectations," Southern Economic Journal, John Wiley & Sons, vol. 89(2), pages 496-521, October.
    7. Pavan Harika Raavi & Jung-Eun Chu & Axel Timmermann & Sun-Seon Lee & Kevin J. E. Walsh, 2023. "Moisture control of tropical cyclones in high-resolution simulations of paleoclimate and future climate," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. John Miller & Guilherme Vieira Silva & Darrell Strauss, 2023. "Divergence of tropical cyclone hazard based on wind-weighted track distributions in the Coral Sea, over 50 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2591-2617, March.
    9. Xiangbo Feng & Nicholas P. Klingaman & Kevin I. Hodges, 2021. "Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Phillip K. Agbesi & Rico Ruffino & Marko Hakovirta, 2023. "The development of sustainable electric vehicle business ecosystems," SN Business & Economics, Springer, vol. 3(8), pages 1-59, August.
    11. Reza Marsooli & Ning Lin, 2020. "Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York," Climatic Change, Springer, vol. 163(4), pages 2153-2171, December.
    12. Raphaelle G. Coulombe & Akhil Rao, 2023. "Fires and Local Labor Markets," Papers 2308.02739, arXiv.org.
    13. Ryan E. Truchelut & Philip J. Klotzbach & Erica M. Staehling & Kimberly M. Wood & Daniel J. Halperin & Carl J. Schreck & Eric S. Blake, 2022. "Earlier onset of North Atlantic hurricane season with warming oceans," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Lilai Xu & Shengping Ding & Vilas Nitivattananon & Jianxiong Tang, 2021. "Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    15. Yang Yang & David J. W. Piper & Min Xu & Jianhua Gao & Jianjun Jia & Alexandre Normandeau & Dongdong Chu & Liang Zhou & Ya Ping Wang & Shu Gao, 2022. "Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Shifei Tu & Johnny C. L. Chan & Jianjun Xu & Quanjia Zhong & Wen Zhou & Yu Zhang, 2022. "Increase in tropical cyclone rain rate with translation speed," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Nick Taylor & Jennifer Irish & Ikpoto Udoh & Matthew Bilskie & Scott Hagen, 2015. "Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1103-1123, June.
    18. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    19. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    20. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04853-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.