IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v237y2023ics095183202300265x.html
   My bibliography  Save this article

Parallel assessment of the tropical cyclone wind hazard at multiple locations using the probability density evolution method integrated with the change of probability measure

Author

Listed:
  • Hong, Xu
  • Wan, Zhiqiang
  • Chen, Jianbing

Abstract

The tropical cyclone (TC) wind hazard assessment formulates a change-of-random-variable problem, which maps the probability space of controlling parameters to that of the TC-induced wind. This study presents a framework for analyzing the TC wind hazard based on the probability density evolution method (PDEM) integrated with the change of probability measure (COM). It is advantageous in the problem of assessing the TC wind hazards at multiple locations over the traditional approach because a common set of representative deterministic solutions of physical equations can be re-used for all locations rather than solving a separate set of solutions at each location. The proposed method is applied to estimate the wind hazard on the Chinese southeast coastline. The common representative deterministic points are selected by the generalized-F-discrepancy-based method with the probability distributions of controlling parameters at Shantou. Based on the COM, the geographical dependence of probabilistic characteristics is represented by changing the assigned probability. The PDEM is incorporated to evaluate the propagation of randomness from the input-controlling parameters to the TC-induced surface wind. The comparison to the Monte Carlo simulation demonstrates the high efficiency and accuracy of the proposed method.

Suggested Citation

  • Hong, Xu & Wan, Zhiqiang & Chen, Jianbing, 2023. "Parallel assessment of the tropical cyclone wind hazard at multiple locations using the probability density evolution method integrated with the change of probability measure," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:reensy:v:237:y:2023:i:c:s095183202300265x
    DOI: 10.1016/j.ress.2023.109351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300265X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Avantika Gori & Ning Lin & Dazhi Xi & Kerry Emanuel, 2022. "Publisher Correction: Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard," Nature Climate Change, Nature, vol. 12(5), pages 491-491, May.
    3. Xu, Jun & Wang, Ding, 2019. "Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 329-340.
    4. Avantika Gori & Ning Lin & Dazhi Xi & Kerry Emanuel, 2022. "Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard," Nature Climate Change, Nature, vol. 12(2), pages 171-178, February.
    5. Cao, Xinhu & Lam, Jasmine Siu Lee, 2018. "Simulation-based catastrophe-induced port loss estimation," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 1-12.
    6. Shen, Zhonghui & Wei, Kai, 2021. "Stochastic model of tropical cyclones along China coast including the effects of spatial heterogeneity and ocean feedback," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Pinelli, J.-P. & Gurley, K.R. & Subramanian, C.S. & Hamid, S.S. & Pita, G.L., 2008. "Validation of a probabilistic model for hurricane insurance loss projections in Florida," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1896-1905.
    8. Lee, Ji Yun & Ellingwood, Bruce R., 2017. "A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 100-107.
    9. Salman, Abdullahi M. & Li, Yue & Stewart, Mark G., 2015. "Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 319-333.
    10. Ma, Liyang & Christou, Vasileios & Bocchini, Paolo, 2022. "Framework for probabilistic simulation of power transmission network performance under hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. He, Jingran & Gao, Ruofan & Chen, Jianbing, 2022. "A sparse data-driven stochastic damage model for seismic reliability assessment of reinforced concrete structures," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Li, He & Guedes Soares, C, 2022. "Assessment of failure rates and reliability of floating offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. S. Li & H. Hong, 2015. "Use of historical best track data to estimate typhoon wind hazard at selected sites in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1395-1414, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Sourav & Tesfamariam, Solomon, 2024. "Reliability assessment of stochastic dynamical systems using physics informed neural network based PDEM," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Shen, Zhonghui & Wei, Kai, 2021. "Stochastic model of tropical cyclones along China coast including the effects of spatial heterogeneity and ocean feedback," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    4. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Pavan Harika Raavi & Jung-Eun Chu & Axel Timmermann & Sun-Seon Lee & Kevin J. E. Walsh, 2023. "Moisture control of tropical cyclones in high-resolution simulations of paleoclimate and future climate," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Zhenshan Chen & Charles A. Towe, 2024. "Pricing Coastal Amenities and Flood Hazards," Land Economics, University of Wisconsin Press, vol. 100(1), pages 109-126.
    7. Thomas R. Knutson & Joseph J. Sirutis & Morris A. Bender & Robert E. Tuleya & Benjamin A. Schenkel, 2022. "Dynamical downscaling projections of late twenty-first-century U.S. landfalling hurricane activity," Climatic Change, Springer, vol. 171(3), pages 1-23, April.
    8. Dikshit, Saransh & Alipour, Alice, 2023. "A moment-matching method for fragility analysis of transmission towers under straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Bi, Wenzhe & Tian, Li & Li, Chao & Ma, Zhen & Pan, Haiyang, 2023. "Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Kui Xu & Chenyue Wang & Lingling Bin, 2023. "Compound flood models in coastal areas: a review of methods and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 469-496, March.
    11. Alam, Md. Shaharier & Kim, Kyusik & Horner, Mark W. & Alisan, Onur & Antwi, Richard & Ozguven, Eren Erman, 2024. "Large-scale modeling of hurricane flooding and disrupted infrastructure impacts on accessibility to critical facilities," Journal of Transport Geography, Elsevier, vol. 116(C).
    12. Hazem Krichene & Thomas Vogt & Franziska Piontek & Tobias Geiger & Christof Schötz & Christian Otto, 2023. "The social costs of tropical cyclones," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Peihua Qin & Zhenghui Xie & Binghao Jia & Rui Han & Buchun Liu, 2023. "Predicting Changes in Population Exposure to Precipitation Extremes over Beijing–Tianjin–Hebei Urban Agglomeration with Regional Climate Model RegCM4 on a Convection-Permitting Scale," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    14. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Wu, Jinhui & Tao, Yourui & Han, Xu, 2023. "Polynomial chaos expansion approximation for dimension-reduction model-based reliability analysis method and application to industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    17. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    20. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:237:y:2023:i:c:s095183202300265x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.