IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v35y2011i2p129-141.html
   My bibliography  Save this article

Semiparametric deconvolution with unknown error variance

Author

Listed:
  • William Horrace
  • Christopher Parmeter

Abstract

Deconvolution is a useful statistical technique for recovering an unknown density in the presence of measurement error. Typically, the method hinges on stringent assumptions about teh nature of the measurement error, more specifically, that the distribution is *entirely* known. We relax this assumption in the context of a regression error component model and develop an estimator for the unkinown density. We show semi-uniform consistency of the estimator and provide Monte Carlo evidence that demonstrates the merits of the method.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
  • Handle: RePEc:kap:jproda:v:35:y:2011:i:2:p:129-141
    DOI: 10.1007/s11123-010-0193-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-010-0193-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-010-0193-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabien Postel-Vinay & Jean-Marc Robin, 2002. "The Distribution of Earnings in an Equilibrium Search Model with State-Dependent Offers and Counteroffers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(4), pages 989-1016, November.
    2. Wang, Wei Siang & Schmidt, Peter, 2009. "On the distribution of estimated technical efficiency in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 148(1), pages 36-45, January.
    3. Wei Wang & Christine Amsler & Peter Schmidt, 2011. "Goodness of fit tests in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 95-118, April.
    4. Joel L. Horowitz & Marianthi Markatou, 1996. "Semiparametric Estimation of Regression Models for Panel Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 63(1), pages 145-168.
    5. Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
    6. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    7. Shunpu Zhang & Rohana Karunamuni, 2000. "Boundary Bias Correction for Nonparametric Deconvolution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 612-629, December.
    8. Li, Tong & Perrigne, Isabelle & Vuong, Quang, 2000. "Conditionally independent private information in OCS wildcat auctions," Journal of Econometrics, Elsevier, vol. 98(1), pages 129-161, September.
    9. A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
    10. Elena Krasnokutskaya, 2004. "Identification and Estimation in Highway Procurement Auctions under Unobserved Auction Heterogeneity," PIER Working Paper Archive 05-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    12. Joel L. Horowitz & Marianthi Markatou, 1993. "Semiparametric Estimation Of Regression Models For Panel Data," Econometrics 9309001, University Library of Munich, Germany.
    13. Peter Hall & Peihua Qiu, 2005. "Discrete-transform approach to deconvolution problems," Biometrika, Biometrika Trust, vol. 92(1), pages 135-148, March.
    14. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    15. C. Lanier Benkard & Patrick Bajari, 2005. "Hedonic Price Indexes With Unobserved Product Characteristics, and Application to Personal Computers," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 61-75, January.
    16. Raymond J. Carroll & Peter Hall, 2004. "Low order approximations in deconvolution and regression with errors in variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 31-46, February.
    17. A. Delaigle & I. Gijbels, 2002. "Estimation of integrated squared density derivatives from a contaminated sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 869-886, October.
    18. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    19. Rebitzer, James B, 1987. "Unemployment, Long-term Employment Relations, and Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 627-635, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    2. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2024. "Penalized sieve estimation of zero‐inefficiency stochastic frontiers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 41-65, January.
    3. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    4. Taining Wang & Feng Yao & Subal C. Kumbhakar, 2024. "A flexible stochastic production frontier model with panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 564-588, June.
    5. Yiping Yang & Tiejun Tong & Gaorong Li, 2019. "SIMEX estimation for single-index model with covariate measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 137-161, March.
    6. William C. Horrace & Ian A. Wright, 2020. "Stationary Points for Parametric Stochastic Frontier Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 516-526, July.
    7. Dai, Xiaofeng, 2016. "Non-parametric efficiency estimation using Richardson–Lucy blind deconvolution," European Journal of Operational Research, Elsevier, vol. 248(2), pages 731-739.
    8. Fan Zhang & Joshua Hall & Feng Yao, 2018. "Does Economic Freedom Affect The Production Frontier? A Semiparametric Approach With Panel Data," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 1380-1395, April.
    9. Zhou, Jianhua & Parmeter, Christopher F. & Kumbhakar, Subal C., 2020. "Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1142-1152.
    10. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    11. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    12. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    13. Anaya, Karim L. & Pollitt, Michael G., 2017. "Using stochastic frontier analysis to measure the impact of weather on the efficiency of electricity distribution businesses in developing economies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1078-1094.
    14. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    15. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    16. William C. Horrace & Christopher F. Parmeter, 2018. "A Laplace stochastic frontier model," Econometric Reviews, Taylor & Francis Journals, vol. 37(3), pages 260-280, March.
    17. Alessandro Bonanno & Francesco Bimbo & Marco Costanigro & Alfons Oude Lansink & Rosaria Viscecchia, 2019. "Credence attributes and the quest for a higher price – a hedonic stochastic frontier approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 46(2), pages 163-192.
    18. Qu Feng & William Horrace & Guiying Laura Wu, 2013. "Wrong Skewness and Finite Sample Correction in Parametric Stochastic Frontier Models Abstract: In parametric stochastic frontier models, the composed error is specified as the sum of a two-sided noise," Center for Policy Research Working Papers 154, Center for Policy Research, Maxwell School, Syracuse University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    2. María Concepción Pérez-Cárceles & Juan Cándido Gómez-Gallego & Juan Gómez-García, 2016. "Distribution of cost inefficiency in stochastic frontier approach: evidence from Spanish banking," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3030-3041, December.
    3. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    4. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    5. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    6. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 491-533.
    7. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    8. Wei Wang & Christine Amsler & Peter Schmidt, 2011. "Goodness of fit tests in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 95-118, April.
    9. Zangin Zeebari & Kristofer Månsson & Pär Sjölander & Magnus Söderberg, 2023. "Regularized conditional estimators of unit inefficiency in stochastic frontier analysis, with application to electricity distribution market," Journal of Productivity Analysis, Springer, vol. 59(1), pages 79-97, February.
    10. William C. Horrace & Hyunseok Jung & Yi Yang, 2023. "The conditional mode in parametric frontier models," Journal of Productivity Analysis, Springer, vol. 60(3), pages 333-343, December.
    11. Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
    12. Gómez-Gallego, Juan Cándido & Gómez-García, Juan & Pérez-Cárceles, María Concepción, 2012. "Appropriate Distribution of Cost Inefficiency Estimates as Predictor of Financial Instability /La distribución de la ineficiencia estimada como predictor de inestabilidad financiera," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 30, pages 1071(12.)-1, Diciembre.
    13. Delaigle, A. & Gijbels, I., 2006. "Data-driven boundary estimation in deconvolution problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1965-1994, April.
    14. Stephen M. Miller & Terrence M. Clauretie & Thomas M. Springer, 2006. "Economies Of Scale And Cost Efficiencies: A Panel‐Data Stochastic‐Frontier Analysis Of Real Estate Investment Trusts," Manchester School, University of Manchester, vol. 74(4), pages 483-499, July.
    15. Sandrine Kablan & Ouidad Yousfi, 2015. "Performance of Islamic Banks across the World: An Empirical Analysis over the Period 2001-2008," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(1), pages 27-46.
    16. Cuéllar Martín, Jaime & Martín-Román, Ángel L. & Moral, Alfonso, 2017. "A composed error model decomposition and spatial analysis of local unemployment," MPRA Paper 79783, University Library of Munich, Germany.
    17. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    18. repec:wvu:wpaper:10-09 is not listed on IDEAS
    19. Pantzios, Christos J. & Rozakis, Stelios & Tzouvelekas, Vangelis, 2006. "Evading Farm Support Reduction via Efficient Input Use: The Case of Greek Cotton Growers," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(3), pages 555-574, December.
    20. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2003. "Semiparametric-efficient estimation of AR(1) panel data models," Journal of Econometrics, Elsevier, vol. 117(2), pages 279-309, December.
    21. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.

    More about this item

    Keywords

    Error component; Ordinary smooth; Semi-uniform consistency; C14; C21; D24;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:35:y:2011:i:2:p:129-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.