Low order approximations in deconvolution and regression with errors in variables
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-9868.2004.00430.x
Download full text from publisher
References listed on IDEAS
- John Staudenmayer & David Ruppert, 2004. "Local polynomial regression and simulation–extrapolation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 17-30, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
- Eric Weese & Masayoshi Hayashi & Masashi Nishikawa, 2015.
"Inefficiency and Self-Determination: Simulation-based Evidence from Meiji Japan,"
Discussion Paper Series
DP2015-35, Research Institute for Economics & Business Administration, Kobe University.
- Eric Weese & Masayoshi Hayashi & Masashi Nishikawa, 2016. "Inefficiency and Self-Determination: Simulation-based evidence from Meiji Japan," Discussion Papers 1627, Graduate School of Economics, Kobe University.
- Eric Weese & Masayoshi Hayashi & Masashi Nishikawa, 2015. "Inefficiency and Self-Determination: Simulation-Based Evidence From Meiji Japan," Working Papers 1050, Economic Growth Center, Yale University.
- Eric Weese & Masayoshi Hayashi & Masashi Nishikawa, 2015. "Inefficiency and Self-Determination: Simulation-based Evidence from Meiji Japan," CIRJE F-Series CIRJE-F-989, CIRJE, Faculty of Economics, University of Tokyo.
- Weese, Eric & Hayashi, Masayoshi & Nishikawa, Masashi, 2015. "Inefficiency and Self-Determination: Simulation-Based Evidence From Meiji Japan," Center Discussion Papers 211545, Yale University, Economic Growth Center.
- Marco Di Marzio & Stefania Fensore & Agnese Panzera & Charles C. Taylor, 2022. "Density estimation for circular data observed with errors," Biometrics, The International Biometric Society, vol. 78(1), pages 248-260, March.
- Marco Di Marzio & Stefania Fensore & Charles C. Taylor, 2023. "Kernel regression for errors-in-variables problems in the circular domain," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1217-1237, October.
- Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
- Abhra Sarkar & Bani K. Mallick & Raymond J. Carroll, 2014. "Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors," Biometrics, The International Biometric Society, vol. 70(4), pages 823-834, December.
- Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
- William Horrace & Christopher Parmeter, 2011.
"Semiparametric deconvolution with unknown error variance,"
Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
- William C. Horrace & Christopher F. Parmeter, 2008. "Semiparametric Deconvolution with Unknown Error Variance," Center for Policy Research Working Papers 104, Center for Policy Research, Maxwell School, Syracuse University.
- Carrasco, Marine & Florens, Jean-Pierre, 2011.
"A Spectral Method For Deconvolving A Density,"
Econometric Theory, Cambridge University Press, vol. 27(3), pages 546-581, June.
- Carrasco, Marine & Florens, Jean-Pierre, 2002. "Spectral Method for Deconvolving a Density," IDEI Working Papers 138, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2009.
- Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
- Thomas, Laine & Stefanski, Leonard A. & Davidian, Marie, 2013. "Moment adjusted imputation for multivariate measurement error data with applications to logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 15-24.
- Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9vd036zx, Department of Agricultural & Resource Economics, UC Berkeley.
- Wu, Ximing & Perloff, Jeffrey M., 2007.
"Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution,"
Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series
qt9vd036zx, Department of Agricultural & Resource Economics, UC Berkeley.
- Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Institute for Research on Labor and Employment, Working Paper Series qt9vd036zx, Institute of Industrial Relations, UC Berkeley.
- Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Institute for Research on Labor and Employment, Working Paper Series qt6bm6n30x, Institute of Industrial Relations, UC Berkeley.
- Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6bm6n30x, Department of Agricultural & Resource Economics, UC Berkeley.
- Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
- Matthew Backus & Gregory Lewis, 2016. "Dynamic Demand Estimation in Auction Markets," NBER Working Papers 22375, National Bureau of Economic Research, Inc.
- Martin L. Hazelton & Berwin A. Turlach, 2010. "Semiparametric Density Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 91-108, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
- Yicheng Kang & Xiaodong Gong & Jiti Gao & Peihua Qiu, 2016. "Error-in-Variables Jump Regression Using Local Clustering," Monash Econometrics and Business Statistics Working Papers 13/16, Monash University, Department of Econometrics and Business Statistics.
- Carroll, Raymond J. & Delaigle, Aurore & Hall, Peter, 2009. "Nonparametric Prediction in Measurement Error Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 993-1003.
- Yiping Yang & Tiejun Tong & Gaorong Li, 2019. "SIMEX estimation for single-index model with covariate measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 137-161, March.
- Wang, Xiao-Feng & Fan, Zhaozhi & Wang, Bin, 2010. "Estimating smooth distribution function in the presence of heteroscedastic measurement errors," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 25-36, January.
- Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
- Lechner Sandra & Pohlmeier Winfried, 2005. "Data Masking by Noise Addition and the Estimation of Nonparametric Regression Models," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(5), pages 517-528, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:66:y:2004:i:1:p:31-46. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.