IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v39y2024i4p564-588.html
   My bibliography  Save this article

A flexible stochastic production frontier model with panel data

Author

Listed:
  • Taining Wang
  • Feng Yao
  • Subal C. Kumbhakar

Abstract

We propose a flexible stochastic production frontier model with fixed effects for the panel data in which the semiparametric frontier is additive with bivariate interactions. To avoid potential misspecification and/or “wrong skew problem” due to distributional assumptions, we model the conditional mean of the inefficiency to depend on environmental variables and to be known up to a vector of parameters. We propose a difference‐based estimator for parameters characterizing the conditional mean of the inefficiency term, a profile series estimator, and a kernel‐based one‐step backfitting estimator for the frontier to facilitate inference. We establish their asymptotic properties and show that each component in the frontier estimated by the kernel‐based backfitting has the same asymptotic distribution as the one estimated with the true knowledge on the other components in the frontier (i.e., the oracle property). Through a Monte Carlo study, we demonstrate that the proposed estimators perform well in finite samples. Utilizing a panel of Chinese firm‐level data in 2000–2006, we apply our method to estimate the frontier and efficiency scores and conclude that export plays a significant role in reducing the efficiency of firms.

Suggested Citation

  • Taining Wang & Feng Yao & Subal C. Kumbhakar, 2024. "A flexible stochastic production frontier model with panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 564-588, June.
  • Handle: RePEc:wly:japmet:v:39:y:2024:i:4:p:564-588
    DOI: 10.1002/jae.3033
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.3033
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.3033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaolan Fu, 2005. "Exports, technical progress and productivity growth in a transition economy: a non-parametric approach for China," Applied Economics, Taylor & Francis Journals, vol. 37(7), pages 725-739.
    2. Badi H. Baltagi & Dong Li, 2002. "Series Estimation of Partially Linear Panel Data Models with Fixed Effects," Annals of Economics and Finance, Society for AEF, vol. 3(1), pages 103-116, May.
    3. Mastromarco, Camilla & Simar, Léopold, 2018. "Globalization and productivity: A robust nonparametric world frontier analysis," Economic Modelling, Elsevier, vol. 69(C), pages 134-149.
    4. Sofronis K. Clerides & Saul Lach & James R. Tybout, 1998. "Is Learning by Exporting Important? Micro-Dynamic Evidence from Colombia, Mexico, and Morocco," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 903-947.
    5. Jan De Loecker, 2013. "Detecting Learning by Exporting," American Economic Journal: Microeconomics, American Economic Association, vol. 5(3), pages 1-21, August.
    6. Camilla Mastromarco & Léopold Simar, 2015. "Effect of FDI and Time on Catching Up: New Insights from a Conditional Nonparametric Frontier Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 826-847, August.
    7. Jia Chen & Jiti Gao & Degui Li, 2013. "Estimation in Single-Index Panel Data Models with Heterogeneous Link Functions," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 928-955, November.
    8. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    9. Byeong Park & Léopold Simar & Valentin Zelenyuk, 2015. "Categorical data in local maximum likelihood: theory and applications to productivity analysis," Journal of Productivity Analysis, Springer, vol. 43(2), pages 199-214, April.
    10. Dai, Mi & Maitra, Madhura & Yu, Miaojie, 2016. "Unexceptional exporter performance in China? The role of processing trade," Journal of Development Economics, Elsevier, vol. 121(C), pages 177-189.
    11. Delgado, Miguel A. & Farinas, Jose C. & Ruano, Sonia, 2002. "Firm productivity and export markets: a non-parametric approach," Journal of International Economics, Elsevier, vol. 57(2), pages 397-422, August.
    12. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    13. Yiguo Sun & Raymond J. Carroll & Dingding Li, 2009. "Semiparametric estimation of fixed-effects panel data varying coefficient models," Advances in Econometrics, in: Nonparametric Econometric Methods, pages 101-129, Emerald Group Publishing Limited.
    14. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    15. Deniz Ozabaci & Daniel J. Henderson & Liangjun Su, 2014. "Additive Nonparametric Regression in the Presence of Endogenous Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 555-575, October.
    16. Andrews, Donald W.K. & Whang, Yoon-Jae, 1990. "Additive Interactive Regression Models: Circumvention of the Curse of Dimensionality," Econometric Theory, Cambridge University Press, vol. 6(4), pages 466-479, December.
    17. Jia Chen & Jiti Gao & Degui Li, 2013. "Estimation in Partially Linear Single-Index Panel Data Models With Fixed Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 315-330, July.
    18. Taining Wang & Jinjing Tian & Feng Yao, 2021. "Does high debt ratio influence Chinese firms’ performance? A semiparametric stochastic frontier approach with zero inefficiency," Empirical Economics, Springer, vol. 61(2), pages 587-636, August.
    19. Florens, Jean-Pierre & Simar, Léopold & Van Keilegom, Ingrid, 2014. "Frontier estimation in nonparametric location-scale models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 456-470.
    20. Sperlich, Stefan & Tjøstheim, Dag & Yang, Lijian, 2002. "Nonparametric Estimation And Testing Of Interaction In Additive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 197-251, April.
    21. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    22. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    23. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514.
    24. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    25. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    26. Su, Liangjun & Ullah, Aman, 2006. "Profile likelihood estimation of partially linear panel data models with fixed effects," Economics Letters, Elsevier, vol. 92(1), pages 75-81, July.
    27. Yao, Feng & Wang, Taining, 2021. "A Nonparametric Test Of Significant Variables In Gradients," Econometric Theory, Cambridge University Press, vol. 37(5), pages 959-1003, October.
    28. Feng Yao & Fan Zhang & Subal C. Kumbhakar, 2019. "Semiparametric Smooth Coefficient Stochastic Frontier Model With Panel Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 556-572, July.
    29. Parmeter, Christopher F. & Kumbhakar, Subal C., 2014. "Efficiency Analysis: A Primer on Recent Advances," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(3-4), pages 191-385, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Zhang & Joshua Hall & Feng Yao, 2018. "Does Economic Freedom Affect The Production Frontier? A Semiparametric Approach With Panel Data," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 1380-1395, April.
    2. Zhou, Jianhua & Parmeter, Christopher F. & Kumbhakar, Subal C., 2020. "Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1142-1152.
    3. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    4. Taining Wang & Jinjing Tian & Feng Yao, 2021. "Does high debt ratio influence Chinese firms’ performance? A semiparametric stochastic frontier approach with zero inefficiency," Empirical Economics, Springer, vol. 61(2), pages 587-636, August.
    5. Lopez Gomez, Daniel & Parmeter, Christopher F., 2020. "Smooth coefficient estimation of stochastic frontier models," Economics Letters, Elsevier, vol. 193(C).
    6. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2021. "What do we know from the vast literature on efficiency and productivity in healthcare? A Systematic Review and Bibliometric Analysis," CEPA Working Papers Series WP092021, School of Economics, University of Queensland, Australia.
    7. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2022. "Efficiency Analysis with Stochastic Frontier Models Using Popular Statistical Softwares," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 129-171, Springer.
    8. Yao, Feng & Wang, Taining & Tian, Jinjing & Kumbhakar, Subal C., 2018. "Estimation of a smooth coefficient zero-inefficiency panel stochastic frontier model: A semiparametric approach," Economics Letters, Elsevier, vol. 166(C), pages 25-30.
    9. Ferrara, Giancarlo & Vidoli, Francesco, 2017. "Semiparametric stochastic frontier models: A generalized additive model approach," European Journal of Operational Research, Elsevier, vol. 258(2), pages 761-777.
    10. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    11. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    12. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    13. Emir Malikov & Shunan Zhao & Subal C. Kumbhakar, 2020. "Estimation of firm‐level productivity in the presence of exports: Evidence from China's manufacturing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 457-480, June.
    14. Tsionas, Mike & Parmeter, Christopher F. & Zelenyuk, Valentin, 2023. "Bayesian Artificial Neural Networks for frontier efficiency analysis," Journal of Econometrics, Elsevier, vol. 236(2).
    15. Mike Tsionas & Christopher F. Parmeter & Valentin Zelenyuk, 2021. "Bridging the Divide? Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP082021, School of Economics, University of Queensland, Australia.
    16. Bogui Li & Jianbao Chen & Shuangshuang Li, 2023. "Estimation of Fixed Effects Partially Linear Varying Coefficient Panel Data Regression Model with Nonseparable Space-Time Filters," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    17. Lien, Gudbrand & Kumbhakar, Subal C. & Alem, Habtamu, 2018. "Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms," International Journal of Production Economics, Elsevier, vol. 201(C), pages 53-61.
    18. Baležentis, Tomas & Sun, Kai, 2020. "Measurement of technical inefficiency and total factor productivity growth: A semiparametric stochastic input distance frontier approach and the case of Lithuanian dairy farms," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1174-1188.
    19. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    20. Valentin Zelenyuk & Zhichao Wang, 2023. "Random vs. Explained Inefficiency in Stochastic Frontier Analysis: The Case of Queensland Hospitals," CEPA Working Papers Series WP052023, School of Economics, University of Queensland, Australia.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:39:y:2024:i:4:p:564-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.