IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v39y2024i1p41-65.html
   My bibliography  Save this article

Penalized sieve estimation of zero‐inefficiency stochastic frontiers

Author

Listed:
  • Jun Cai
  • William C. Horrace
  • Christopher F. Parmeter

Abstract

Stochastic frontier models for cross‐sectional data typically assume that the one‐sided distribution of firm‐level inefficiency is continuous. However, it may be reasonable to hypothesize that inefficiency is continuous except for a discrete mass at zero capturing fully efficient firms (zero‐inefficiency). We propose a sieve‐type density estimator for such a mixture distribution in a nonparametric stochastic frontier setting under a unimodality‐at‐zero assumption. Consistency, rates of convergence and asymptotic normality of the estimators are established, as well as a test of the zero‐inefficiency hypothesis. Simulations and two applications are provided to demonstrate the practicality of the method.

Suggested Citation

  • Jun Cai & William C. Horrace & Christopher F. Parmeter, 2024. "Penalized sieve estimation of zero‐inefficiency stochastic frontiers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 41-65, January.
  • Handle: RePEc:wly:japmet:v:39:y:2024:i:1:p:41-65
    DOI: 10.1002/jae.3008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.3008
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.3008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    2. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    3. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.
    4. Carlos Martins-Filho & Feng Yao, 2015. "Semiparametric Stochastic Frontier Estimation via Profile Likelihood," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 413-451, April.
    5. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.
    6. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2013. "A zero inefficiency stochastic frontier model," Journal of Econometrics, Elsevier, vol. 172(1), pages 66-76.
    7. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    8. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    9. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    10. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    11. William C. Horrace & Christopher F. Parmeter, 2018. "A Laplace stochastic frontier model," Econometric Reviews, Taylor & Francis Journals, vol. 37(3), pages 260-280, March.
    12. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    13. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    14. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    15. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    16. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    17. Schwarz, M. & Van Bellegem, S., 2010. "Consistent density deconvolution under partially known error distribution," LIDAM Reprints ISBA 2010013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    2. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    3. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    4. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    5. Zhou, Jianhua & Parmeter, Christopher F. & Kumbhakar, Subal C., 2020. "Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1142-1152.
    6. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    7. Zangin Zeebari & Kristofer Månsson & Pär Sjölander & Magnus Söderberg, 2023. "Regularized conditional estimators of unit inefficiency in stochastic frontier analysis, with application to electricity distribution market," Journal of Productivity Analysis, Springer, vol. 59(1), pages 79-97, February.
    8. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    9. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    10. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    11. Léopold Simar & Paul W. Wilson, 2023. "Nonparametric, Stochastic Frontier Models with Multiple Inputs and Outputs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1391-1403, October.
    12. Fan Zhang & Joshua Hall & Feng Yao, 2018. "Does Economic Freedom Affect The Production Frontier? A Semiparametric Approach With Panel Data," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 1380-1395, April.
    13. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.
    14. Christopher F. Parmeter & Léopold Simar & Ingrid Van Keilegom & Valentin Zelenyuk, 2024. "Inference in the nonparametric stochastic frontier model," Econometric Reviews, Taylor & Francis Journals, vol. 43(7), pages 518-539, August.
    15. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    16. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    17. Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023. "Methodologies for assessing government efficiency," Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101, Edward Elgar Publishing.
    18. Tsionas, Mike G., 2021. "Optimal combinations of stochastic frontier and data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 294(2), pages 790-800.
    19. Taining Wang & Jinjing Tian & Feng Yao, 2021. "Does high debt ratio influence Chinese firms’ performance? A semiparametric stochastic frontier approach with zero inefficiency," Empirical Economics, Springer, vol. 61(2), pages 587-636, August.
    20. E. Fusco & R. Benedetti & F. Vidoli, 2023. "Stochastic frontier estimation through parametric modelling of quantile regression coefficients," Empirical Economics, Springer, vol. 64(2), pages 869-896, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:39:y:2024:i:1:p:41-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.