Boundary Bias Correction for Nonparametric Deconvolution
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1017564907869
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Stefanski, Leonard A., 1990. "Rates of convergence of some estimators in a class of deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 229-235, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021.
"Density deconvolution with Laplace errors and unknown variance,"
Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
- Jun Cai & William C. Horrace & Christopher F. Parmeter, 2020. "Density Deconvolution with Laplace Errors and Unknown Variance," Center for Policy Research Working Papers 225, Center for Policy Research, Maxwell School, Syracuse University.
- William Horrace & Christopher Parmeter, 2011.
"Semiparametric deconvolution with unknown error variance,"
Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
- William C. Horrace & Christopher F. Parmeter, 2008. "Semiparametric Deconvolution with Unknown Error Variance," Center for Policy Research Working Papers 104, Center for Policy Research, Maxwell School, Syracuse University.
- Jesús Fajardo & Pedro Harmath, 2021. "Boundary estimation with the fuzzy set density estimator," METRON, Springer;Sapienza Università di Roma, vol. 79(3), pages 285-302, December.
- Delaigle, A. & Gijbels, I., 2006. "Data-driven boundary estimation in deconvolution problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1965-1994, April.
- Yuhao Deng & Chong You & Yukun Liu & Jing Qin & Xiao‐Hua Zhou, 2021. "Estimation of incubation period and generation time based on observed length‐biased epidemic cohort with censoring for COVID‐19 outbreak in China," Biometrics, The International Biometric Society, vol. 77(3), pages 929-941, September.
- Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
- Rachdi, Mustapha & Sabre, Rachid, 2000. "Consistent estimates of the mode of the probability density function in nonparametric deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 105-114, April.
- Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
- Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.
- Ming Yuan, 2003. "Deconvolving Multivariate Density from Random Field," Statistical Inference for Stochastic Processes, Springer, vol. 6(2), pages 135-153, May.
- Valentina Corradi & Norman Swanson & Walter Distaso, 2006.
"Predictive Inference for Integrated Volatility,"
Departmental Working Papers
200616, Rutgers University, Department of Economics.
- Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201108, Rutgers University, Department of Economics.
- Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
- Comte, Fabienne & Kappus, Johanna, 2015. "Density deconvolution from repeated measurements without symmetry assumption on the errors," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 31-46.
- Hesse C. H., 2005. "The heat equation given a time series of initial data subject to error," Statistics & Risk Modeling, De Gruyter, vol. 23(4), pages 317-329, April.
- Wand, M. P., 1998. "Finite sample performance of deconvolving density estimators," Statistics & Probability Letters, Elsevier, vol. 37(2), pages 131-139, February.
- Gwennaëlle Mabon, 2017. "Adaptive Deconvolution on the Non-negative Real Line," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 707-740, September.
- Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
- Gwennaëlle Mabon, 2014. "Adaptive Deconvolution on the Nonnegative Real Line," Working Papers 2014-40, Center for Research in Economics and Statistics.
- Lacour, Claire, 2008. "Adaptive estimation of the transition density of a particular hidden Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 787-814, May.
- Gwennaëlle Mabon, 2014. "Adaptive Estimation of Random-Effects Densities In Linear Mixed-Effects Model," Working Papers 2014-41, Center for Research in Economics and Statistics.
- Barbara Wieczorek, 2010. "On optimal estimation of the mode in nonparametric deconvolution problems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 65-80.
- A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
- Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
- Christian Hesse, 1995. "Deconvolving a density from contaminated dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 645-663, December.
More about this item
Keywords
Deconvolution; density estimation; boundary effects; bandwidth variation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:52:y:2000:i:4:p:612-629. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.