IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v92y2005i1p135-148.html
   My bibliography  Save this article

Discrete-transform approach to deconvolution problems

Author

Listed:
  • Peter Hall
  • Peihua Qiu

Abstract

If Fourier series are used as the basis for inference in deconvolution problems, the effects of the errors factorise out in a way that is easily exploited empirically. This property is the consequence of elementary addition formulae for sine and cosine functions, and is not readily available when one is using methods based on other orthogonal series or on continuous Fourier transforms. It allows relatively simple estimators to be constructed, founded on the addition of finite series rather than on integration. The performance of these methods can be particularly effective when edge effects are involved, since cosine series estimators are quite resistant to boundary problems. In this context we point to the advantages of trigonometric-series methods for density deconvolution; they have better mean squared error performance when edge effects are involved, they are particularly easy to code, and they admit a simple approach to empirical choice of smoothing parameter, in which a version of thresholding, familiar in wavelet-based inference, is used in place of conventional smoothing. Applications to other deconvolution problems are briefly discussed. Copyright 2005, Oxford University Press.

Suggested Citation

  • Peter Hall & Peihua Qiu, 2005. "Discrete-transform approach to deconvolution problems," Biometrika, Biometrika Trust, vol. 92(1), pages 135-148, March.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:135-148
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/92.1.135
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    2. Raymond J. Carroll & Aurore Delaigle & Peter Hall, 2007. "Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 859-878, November.
    3. Martin L. Hazelton & Berwin A. Turlach, 2010. "Semiparametric Density Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 91-108, March.
    4. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log‐density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:135-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.