Estimation of integrated squared density derivatives from a contaminated sample
Author
Abstract
Suggested Citation
DOI: 10.1111/1467-9868.00366
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.
- J. Beirlant & G. Claeskens & C. Croux & H. Degryse & H. Dewachter & G. Dhaene & J. Dhaene & I. Gijbels & M. Goovaerts & M. Hubert & F. Roodhooft & W. Schouten & M. Willekens, 2005. "Managing Uncertainty: Financial, Actuarial and Statistical Modeling," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(1), pages 23-48.
- Mia Hubert & Irène Gijbels & Dina Vanpaemel, 2013. "Reducing the mean squared error of quantile-based estimators by smoothing," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 448-465, September.
- Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
- Bissantz, Nicolai & Birke, Melanie, 2009. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2364-2375, November.
- Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
- Bissantz, Nicolai & Birke, Melanie, 2008. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Technical Reports 2008,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Parmeter, Christopher F., 2008. "The effect of measurement error on the estimated shape of the world distribution of income," Economics Letters, Elsevier, vol. 100(3), pages 373-376, September.
- Mark A. van de Wiel & Kyung In Kim, 2007. "Estimating the False Discovery Rate Using Nonparametric Deconvolution," Biometrics, The International Biometric Society, vol. 63(3), pages 806-815, September.
- Tiee-Jian Wu & Chih-Yuan Hsu & Huang-Yu Chen & Hui-Chun Yu, 2014. "Root $$n$$ n estimates of vectors of integrated density partial derivative functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 865-895, October.
- William Horrace & Christopher Parmeter, 2011.
"Semiparametric deconvolution with unknown error variance,"
Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
- William C. Horrace & Christopher F. Parmeter, 2008. "Semiparametric Deconvolution with Unknown Error Variance," Center for Policy Research Working Papers 104, Center for Policy Research, Maxwell School, Syracuse University.
- Delaigle, A. & Gijbels, I., 2006. "Data-driven boundary estimation in deconvolution problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1965-1994, April.
- Birke, Melanie & Bissantz, Nicolai & Holzmann, Hajo, 2008. "Confidence bands for inverse regression models with application to gel electrophoresis," Technical Reports 2008,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Stéphane Bonhomme & Jean-Marc Robin, 2010.
"Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 491-533.
- Stéphane Bonhomme & Jean-Marc Robin, 2008. "Generalized nonparametric deconvolution with an application to earnings dynamics," CeMMAP working papers CWP03/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
- Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
- Holzmann, Hajo & Bissantz, Nicolai & Munk, Axel, 2007. "Density testing in a contaminated sample," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 57-75, January.
- Yatracos, Yannis G., 2018. "PLUG-IN L2-UPPER ERROR BOUNDS IN DECONVOLUTION, FOR A MIXING DENSITY ESTIMATE IN Rd AND FOR ITS DERIVATIVES," IRTG 1792 Discussion Papers 2018-061, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Cornelis J. Potgieter, 2020. "Density deconvolution for generalized skew-symmetric distributions," Journal of Statistical Distributions and Applications, Springer, vol. 7(1), pages 1-20, December.
- D. Ioannides & Eric Matzner-Løber, 2009. "Regression quantiles with errors-in-variables," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(8), pages 1003-1015.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:869-886. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.