IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v87y2024i4d10.1007_s10640-024-00852-3.html
   My bibliography  Save this article

Can Building Subway Systems Improve Air Quality? New Evidence from Multiple Cities and Machine Learning

Author

Listed:
  • Lunyu Xie

    (Renmin University of China)

  • Tianhua Zou

    (Renmin University of China)

  • Joshua Linn

    (University of Maryland)

  • Haosheng Yan

    (Central University of Finance and Economics)

Abstract

Public investments in subway systems are often motivated by improving local air quality. Recent studies, however, have reached different conclusions on the air quality benefits of subway investment. To reconcile these findings, this paper examines the air quality effects of all 359 subway line openings in China between 2013 and 2018. The machine learning method adopted in this paper substantially improves the consistency and precision of the estimates by purging seasonality, volatility, and the nonlinear effects of meteorological conditions in air quality data. The empirical results suggest an insignificant short-term effect and a significant long-term effect, which is expected as the adjustment of commuting mode takes time. Using the causal forest approach, the heterogeneity analysis find that a city that is experiencing rapid economic growth from a lower income level and currently has fewer subway lines is more likely to experience statistically significant improvements in air quality from a subway opening. These findings help reconcile the different findings in the literature and shed light on air pollution reduction as one of the objectives of public transit investment.

Suggested Citation

  • Lunyu Xie & Tianhua Zou & Joshua Linn & Haosheng Yan, 2024. "Can Building Subway Systems Improve Air Quality? New Evidence from Multiple Cities and Machine Learning," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(4), pages 1009-1044, April.
  • Handle: RePEc:kap:enreec:v:87:y:2024:i:4:d:10.1007_s10640-024-00852-3
    DOI: 10.1007/s10640-024-00852-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-024-00852-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-024-00852-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Greenstone & Rema Hanna, 2014. "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," American Economic Review, American Economic Association, vol. 104(10), pages 3038-3072, October.
    2. Tatyana Deryugina & Garth Heutel & Nolan H. Miller & David Molitor & Julian Reif, 2019. "The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction," American Economic Review, American Economic Association, vol. 109(12), pages 4178-4219, December.
    3. Matthew A. Cole & Robert J R Elliott & Bowen Liu, 2020. "The Impact of the Wuhan Covid-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 553-580, August.
    4. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    5. Nicolas Gendron-Carrier & Marco Gonzalez-Navarro & Stefano Polloni & Matthew A. Turner, 2022. "Subways and Urban Air Pollution," American Economic Journal: Applied Economics, American Economic Association, vol. 14(1), pages 164-196, January.
    6. Catherine Hausman & David S. Rapson, 2018. "Regression Discontinuity in Time: Considerations for Empirical Applications," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 533-552, October.
    7. Diogo G. C. Britto & Paolo Pinotti & Breno Sampaio, 2022. "The Effect of Job Loss and Unemployment Insurance on Crime in Brazil," Econometrica, Econometric Society, vol. 90(4), pages 1393-1423, July.
    8. Li, Pei & Lu, Yi & Wang, Jin, 2020. "The effects of fuel standards on air pollution: Evidence from China," Journal of Development Economics, Elsevier, vol. 146(C).
    9. Kenneth Y. Chay & Michael Greenstone, 2003. "The Impact of Air Pollution on Infant Mortality: Evidence from Geographic Variation in Pollution Shocks Induced by a Recession," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 1121-1167.
    10. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    11. Panle Jia Barwick & Shanjun Li & Liguo Lin & Eric Yongchen Zou, 2024. "From Fog to Smog: The Value of Pollution Information," American Economic Review, American Economic Association, vol. 114(5), pages 1338-1381, May.
    12. Benjamin Handel & Jonathan Kolstad, 2017. "Wearable Technologies and Health Behaviors: New Data and New Methods to Understand Population Health," American Economic Review, American Economic Association, vol. 107(5), pages 481-485, May.
    13. Fan, Yingling & Guthrie, Andrew E & Levinson, David M, 2012. "Impact of light rail implementation on labor market accessibility: A transportation equity perspective," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 28-39.
    14. Fiona Burlig & Christopher Knittel & David Rapson & Mar Reguant & Catherine Wolfram, 2020. "Machine Learning from Schools about Energy Efficiency," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(6), pages 1181-1217.
    15. Newham, Melissa & Valente, Marica, 2024. "The cost of influence: How gifts to physicians shape prescriptions and drug costs," Journal of Health Economics, Elsevier, vol. 95(C).
    16. Viard, V. Brian & Fu, Shihe, 2015. "The effect of Beijing's driving restrictions on pollution and economic activity," Journal of Public Economics, Elsevier, vol. 125(C), pages 98-115.
    17. Tom Chang & Joshua Graff Zivin & Tal Gross & Matthew Neidell, 2016. "Particulate Pollution and the Productivity of Pear Packers," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 141-169, August.
    18. Beaudoin, Justin & Farzin, Y. Hossein & Lin Lawell, C.-Y. Cynthia, 2015. "Public transit investment and sustainable transportation: A review of studies of transit's impact on traffic congestion and air quality," Research in Transportation Economics, Elsevier, vol. 52(C), pages 15-22.
    19. Siqi Zheng & Matthew E. Kahn, 2017. "A New Era of Pollution Progress in Urban China?," Journal of Economic Perspectives, American Economic Association, vol. 31(1), pages 71-92, Winter.
    20. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    21. Yizhen Gu & Chang Jiang & Junfu Zhang & Ben Zou, 2021. "Subways and Road Congestion," American Economic Journal: Applied Economics, American Economic Association, vol. 13(2), pages 83-115, April.
    22. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    23. Janet Currie & Matthew Neidell, 2005. "Air Pollution and Infant Health: What Can We Learn from California's Recent Experience?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(3), pages 1003-1030.
    24. Michael Greenstone & Guojun He & Ruixue Jia & Tong Liu, 2022. "Can Technology Solve the Principal-Agent Problem? Evidence from China's War on Air Pollution," American Economic Review: Insights, American Economic Association, vol. 4(1), pages 54-70, March.
    25. Susan Athey & Guido Imbens & Thai Pham & Stefan Wager, 2017. "Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges," American Economic Review, American Economic Association, vol. 107(5), pages 278-281, May.
    26. Pargal, Sheoli & Wheeler, David, 1996. "Informal Regulation of Industrial Pollution in Developing Countries: Evidence from Indonesia," Journal of Political Economy, University of Chicago Press, vol. 104(6), pages 1314-1327, December.
    27. Xie, Lunyu, 2016. "Automobile usage and urban rail transit expansion: evidence from a natural experiment in Beijing, China," Environment and Development Economics, Cambridge University Press, vol. 21(5), pages 557-580, October.
    28. Chang, Yu Sang & Lee, Yong Joo & Choi, Sung Sup Brian, 2017. "Is there more traffic congestion in larger cities? -Scaling analysis of the 101 largest U.S. urban centers-," Transport Policy, Elsevier, vol. 59(C), pages 54-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Wang-Sheng & Tran, Trang My & Yu, Lamont Bo, 2023. "Green infrastructure and air pollution: Evidence from highways connecting two megacities in China," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    2. Shihe Fu & V. Brian Viard, 2022. "A mayors perspective on tackling air pollution," Chapters, in: Charles K.Y. Leung (ed.), Handbook of Real Estate and Macroeconomics, chapter 16, pages 413-437, Edward Elgar Publishing.
    3. Rivera, Nathaly M., 2021. "Air quality warnings and temporary driving bans: Evidence from air pollution, car trips, and mass-transit ridership in Santiago," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    4. Colmer, Jonathan & Lin, Dajun & Liu, Siying & Shimshack, Jay, 2021. "Why are pollution damages lower in developed countries? Insights from high-Income, high-particulate matter Hong Kong," Journal of Health Economics, Elsevier, vol. 79(C).
    5. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    6. Rivera, Nathaly M., 2017. "The Effectiveness of Temporary Driving Restrictions: Evidence from Air Pollution, Vehicle Flows, and Mass-Transit Users in Santiago," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259182, Agricultural and Applied Economics Association.
    7. Ying Wang & Jing Tao & Rong Wang & Chuanmin Mi, 2020. "Can the New Subway Line Openings Mitigate PM10 Concentration? Evidence from Chinese Cities Based on the PSM-DID Method," IJERPH, MDPI, vol. 17(13), pages 1-19, June.
    8. Chen, Jidong & Shi, Xinzheng & Zhang, Ming-ang & Zhang, Sihan, 2024. "Centralization of environmental administration and air pollution: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 126(C).
    9. Ying Deng & Qianqian Yue & Xin Zhao, 2024. "What Does Air Quality Information Disclosure Deliver and to Whom? Evidence from the Ambient Air Quality Standard (2012) Program in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(11), pages 2859-2887, November.
    10. Yao, Yao & Li, Xue & Smyth, Russell & Zhang, Lin, 2022. "Air pollution and political trust in local government: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    11. Nicholas Rivers & Soodeh Saberian & Brandon Schaufele, 2020. "Public transit and air pollution: Evidence from Canadian transit strikes," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 496-525, May.
    12. Wang, Linfeng & Shi, Tie & Chen, Hanyi, 2023. "Air pollution and infant mortality: Evidence from China," Economics & Human Biology, Elsevier, vol. 49(C).
    13. Gillingham, Kenneth & Huang, Pei, 2021. "Racial disparities in the health effects from air pollution: Evidence from ports," ZEW Discussion Papers 21-058, ZEW - Leibniz Centre for European Economic Research.
    14. Shi, Xinzheng & Zhang, Ming-ang, 2023. "Waste import and air pollution: Evidence from China's waste import ban," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).
    15. Newham, Melissa & Valente, Marica, 2024. "The cost of influence: How gifts to physicians shape prescriptions and drug costs," Journal of Health Economics, Elsevier, vol. 95(C).
    16. Li, Shanjun & Wang, Binglin & Zhou, Hui, 2024. "Decarbonizing passenger transportation in developing countries: Lessons and perspectives1," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    17. Li, Jennifer (Jie) & Massa, Massimo & Zhang, Hong & Zhang, Jian, 2021. "Air pollution, behavioral bias, and the disposition effect in China," Journal of Financial Economics, Elsevier, vol. 142(2), pages 641-673.
    18. Wolfgang Habla & Vera Huwe & Martin Kesternich, 2019. "Tempolimits und Grenzwerte: für eine evidenzbasierte verkehrspolitische Debatte [Plea for Evidence-based Policy in the Context of Air Pollution Thresholds and Speed Limits]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 99(5), pages 330-334, May.
    19. Jennifer A. Heissel & Claudia Persico & David Simon, 2022. "Does Pollution Drive Achievement? The Effect of Traffic Pollution on Academic Performance," Journal of Human Resources, University of Wisconsin Press, vol. 57(3), pages 747-776.
    20. Mark Borgschulte & David Molitor & Eric Yongchen Zou, 2024. "Air Pollution and the Labor Market: Evidence from Wildfire Smoke," The Review of Economics and Statistics, MIT Press, vol. 106(6), pages 1558-1575, November.

    More about this item

    Keywords

    Air quality; Heterogenous effect; Machine learning method; Urban rail transit;
    All these keywords.

    JEL classification:

    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R53 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Public Facility Location Analysis; Public Investment and Capital Stock

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:87:y:2024:i:4:d:10.1007_s10640-024-00852-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.