IDEAS home Printed from https://ideas.repec.org/a/aea/aejapp/v13y2021i2p83-115.html
   My bibliography  Save this article

Subways and Road Congestion

Author

Listed:
  • Yizhen Gu
  • Chang Jiang
  • Junfu Zhang
  • Ben Zou

Abstract

We study whether subways alleviate road congestion by examining 45 subway line launches in China and by using detailed data on road speed. Our difference-in-differences estimation finds that in the first year after a subway line is launched, rush hour speed on nearby roads increases by about 4 percent. The effect is most prominent in initially congested roads and declines over distance to the new subway line. Evidence on road speed is corroborated with substitution patterns among modes of transportation. Using auxiliary data from Beijing, we calculate that the time savings for each automobile or bus commute from faster speed is worth US$0.10.

Suggested Citation

  • Yizhen Gu & Chang Jiang & Junfu Zhang & Ben Zou, 2021. "Subways and Road Congestion," American Economic Journal: Applied Economics, American Economic Association, vol. 13(2), pages 83-115, April.
  • Handle: RePEc:aea:aejapp:v:13:y:2021:i:2:p:83-115
    DOI: 10.1257/app.20190024
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/app.20190024
    Download Restriction: no

    File URL: https://doi.org/10.3886/E115681V1
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/app.20190024.appx
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/app.20190024.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/app.20190024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephan Heblich & Stephen J Redding & Daniel M Sturm, 2020. "The Making of the Modern Metropolis: Evidence from London," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(4), pages 2059-2133.
    2. Gonzalez-Navarro, Marco & Turner, Matthew A., 2018. "Subways and urban growth: Evidence from earth," Journal of Urban Economics, Elsevier, vol. 108(C), pages 85-106.
    3. Prottoy Akbar & Victor Couture & Gilles Duranton & Adam Storeygard, 2023. "Mobility and Congestion in Urban India," American Economic Review, American Economic Association, vol. 113(4), pages 1083-1111, April.
    4. Winston, Clifford & Maheshri, Vikram, 2007. "On the social desirability of urban rail transit systems," Journal of Urban Economics, Elsevier, vol. 62(2), pages 362-382, September.
    5. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    6. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    7. Adler, Martin W. & van Ommeren, Jos N., 2016. "Does public transit reduce car travel externalities? Quasi-natural experiments' evidence from transit strikes," Journal of Urban Economics, Elsevier, vol. 92(C), pages 106-119.
    8. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    9. Yihsu Chen & Alexander Whalley, 2012. "Green Infrastructure: The Effects of Urban Rail Transit on Air Quality," American Economic Journal: Economic Policy, American Economic Association, vol. 4(1), pages 58-97, February.
    10. Voith, Richard, 1991. "The long-run elasticity of demand for commuter rail transportation," Journal of Urban Economics, Elsevier, vol. 30(3), pages 360-372, November.
    11. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    12. Gu, Yizhen & Deakin, Elizabeth & Long, Ying, 2017. "The effects of driving restrictions on travel behavior evidence from Beijing," Journal of Urban Economics, Elsevier, vol. 102(C), pages 106-122.
    13. Winston, Clifford & Langer, Ashley, 2006. "The effect of government highway spending on road users' congestion costs," Journal of Urban Economics, Elsevier, vol. 60(3), pages 463-483, November.
    14. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    15. Hsu, Wen-Tai & Zhang, Hongliang, 2014. "The fundamental law of highway congestion revisited: Evidence from national expressways in Japan," Journal of Urban Economics, Elsevier, vol. 81(C), pages 65-76.
    16. Gilles Duranton & Matthew A. Turner, 2011. "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, American Economic Association, vol. 101(6), pages 2616-2652, October.
    17. Yang, Jun & Chen, Shuai & Qin, Ping & Lu, Fangwen & Liu, Antung A., 2018. "The effect of subway expansions on vehicle congestion: Evidence from Beijing," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 114-133.
    18. Akbar, Prottoy & Duranton, Gilles, 2017. "Measuring the Cost of Congestion in Highly Congested City: Bogotá," Research Department working papers 1028, CAF Development Bank Of Latinamerica.
    19. Shanjun Li, 2018. "Better Lucky Than Rich? Welfare Analysis of Automobile Licence Allocations in Beijing and Shanghai," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(4), pages 2389-2428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kunlun & Zheng, Leven J. & Zhang, Justin Zuopeng & Yao, Hongjiang, 2022. "The impact of promoting new energy vehicles on carbon intensity: Causal evidence from China," Energy Economics, Elsevier, vol. 114(C).
    2. Guang Chen & Akira Hibiki, 2022. "Can the Carbon Emission Trading Scheme Influence Industrial Green Production in China?," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    3. Bou Sleiman, Lea, 2023. "Displacing Congestion: Evidence from Paris," CEPREMAP Working Papers (Docweb) 2302, CEPREMAP.
    4. Shihe Fu & V. Brian Viard, 2022. "A mayors perspective on tackling air pollution," Chapters, in: Charles K.Y. Leung (ed.), Handbook of Real Estate and Macroeconomics, chapter 16, pages 413-437, Edward Elgar Publishing.
    5. Yoshifumi Konishi & Akari Ono, 2024. "Is Ride-sharing Good for Environment?," Keio-IES Discussion Paper Series 2024-014, Institute for Economics Studies, Keio University.
    6. Li, Tianshu & Song, Shunfeng & Yang, Yanmin, 2022. "Driving restrictions, traffic speeds and carbon emissions: Evidence from high-frequency data," China Economic Review, Elsevier, vol. 74(C).
    7. Lee, Wang-Sheng & Tran, Trang My & Yu, Lamont Bo, 2023. "Green infrastructure and air pollution: Evidence from highways connecting two megacities in China," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    8. Jindong Pang & Shulin Shen, 2023. "Do ridesharing services cause traffic congestion?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(2), pages 520-552, May.
    9. Ioulia V Ossokina & Jos van Ommeren & Henk van Mourik, 2023. "Do highway widenings reduce congestion?," Review of Finance, European Finance Association, vol. 23(4), pages 871-900.
    10. Pang, Jindong & An, Lan & Shen, Shulin, 2023. "Gasoline prices, traffic congestion, and carbon emissions," Resource and Energy Economics, Elsevier, vol. 75(C).
    11. Ai, Hongshan & Zhong, Tenglong & Zhou, Zhengqing, 2022. "The real economic costs of COVID-19: Insights from electricity consumption data in Hunan Province, China," Energy Economics, Elsevier, vol. 105(C).
    12. Ai, Hongshan & Zhou, Zhengqing & Li, Ke & Kang, Zhi-Yong, 2021. "Impacts of the desulfurization price subsidy policy on SO2 reduction: Evidence from China's coal-fired power plants," Energy Policy, Elsevier, vol. 157(C).
    13. Ioulia V Ossokina & Jos van Ommeren & Henk van Mourik, 2023. "Do highway widenings reduce congestion?," Journal of Economic Geography, Oxford University Press, vol. 23(4), pages 871-900.
    14. Xia, Fan & Cheng, Ximeng & Lei, Zhen & Xu, Jintao & Liu, Yu & Zhang, Yingxin & Zhang, Qinghong, 2023. "Heterogeneous impacts of local traffic congestion on local air pollution within a city: Utilizing taxi trajectory data," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    15. Lunyu Xie & Tianhua Zou & Joshua Linn & Haosheng Yan, 2024. "Can Building Subway Systems Improve Air Quality? New Evidence from Multiple Cities and Machine Learning," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(4), pages 1009-1044, April.
    16. Chen, Liming & Lu, Yang & Nanayakkara, Aruna, 2023. "Rural road connectivity and local economic Activity: Evidence from Sri Lanka’s iRoad program," Transport Policy, Elsevier, vol. 144(C), pages 49-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioulia V Ossokina & Jos van Ommeren & Henk van Mourik, 2023. "Do highway widenings reduce congestion?," Journal of Economic Geography, Oxford University Press, vol. 23(4), pages 871-900.
    2. Gaduh, Arya & Gračner, Tadeja & Rothenberg, Alexander D., 2022. "Life in the slow lane: Unintended consequences of public transit in Jakarta," Journal of Urban Economics, Elsevier, vol. 128(C).
    3. Ioulia V Ossokina & Jos van Ommeren & Henk van Mourik, 2023. "Do highway widenings reduce congestion?," Review of Finance, European Finance Association, vol. 23(4), pages 871-900.
    4. Nicolas Gendron-Carrier & Marco Gonzalez-Navarro & Stefano Polloni & Matthew A. Turner, 2022. "Subways and Urban Air Pollution," American Economic Journal: Applied Economics, American Economic Association, vol. 14(1), pages 164-196, January.
    5. Beaudoin, Justin & Lin Lawell, C.-Y. Cynthia, 2018. "The effects of public transit supply on the demand for automobile travel," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 447-467.
    6. Stefan Bauernschuster & Timo Hener & Helmut Rainer, 2017. "When Labor Disputes Bring Cities to a Standstill: The Impact of Public Transit Strikes on Traffic, Accidents, Air Pollution, and Health," American Economic Journal: Economic Policy, American Economic Association, vol. 9(1), pages 1-37, February.
    7. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    8. Viard, V. Brian & Fu, Shihe, 2015. "The effect of Beijing's driving restrictions on pollution and economic activity," Journal of Public Economics, Elsevier, vol. 125(C), pages 98-115.
    9. Shihe Fu & V. Brian Viard, 2022. "A mayors perspective on tackling air pollution," Chapters, in: Charles K.Y. Leung (ed.), Handbook of Real Estate and Macroeconomics, chapter 16, pages 413-437, Edward Elgar Publishing.
    10. Daniel Albalate & Xavier Fageda, 2019. "Congestion, Road Safety, and the Effectiveness of Public Policies in Urban Areas," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    11. Nicholas Rivers & Soodeh Saberian & Brandon Schaufele, 2020. "Public transit and air pollution: Evidence from Canadian transit strikes," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 496-525, May.
    12. Michael L. Anderson, 2014. "Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion," American Economic Review, American Economic Association, vol. 104(9), pages 2763-2796, September.
    13. Bou Sleiman, Lea, 2023. "Displacing Congestion: Evidence from Paris," CEPREMAP Working Papers (Docweb) 2302, CEPREMAP.
    14. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    15. Gilles Duranton & Geetika Nagpal & Matthew A. Turner, 2020. "Transportation Infrastructure in the US," NBER Chapters, in: Economic Analysis and Infrastructure Investment, pages 165-210, National Bureau of Economic Research, Inc.
    16. Miquel-Àngel Garcia-López & Ilias Pasidis & Elisabet Viladecans-Marsal, 2022. "Congestion in highways when tolls and railroads matter: evidence from European cities [The congestion relief benefit of public transit: evidence from Rome]," Journal of Economic Geography, Oxford University Press, vol. 22(5), pages 931-960.
    17. Hamilton, Timothy L. & Wichman, Casey J., 2018. "Bicycle infrastructure and traffic congestion: Evidence from DC's Capital Bikeshare," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 72-93.
    18. Peng, Cong, 2019. "Does e-commerce reduce traffic congestion? Evidence from Alibaba Single Day shopping event," LSE Research Online Documents on Economics 103411, London School of Economics and Political Science, LSE Library.
    19. Lalive, Rafael & Luechinger, Simon & Schmutzler, Armin, 2018. "Does expanding regional train service reduce air pollution?," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 744-764.
    20. Davis, Lucas W., 2021. "Estimating the price elasticity of demand for subways: Evidence from Mexico," Regional Science and Urban Economics, Elsevier, vol. 87(C).

    More about this item

    JEL classification:

    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • P25 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Urban, Rural, and Regional Economics
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Subways and Road Congestion (American Economic Journal: Applied Economics 2021) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aejapp:v:13:y:2021:i:2:p:83-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.