IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1702.01250.html
   My bibliography  Save this paper

Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges

Author

Listed:
  • Susan Athey
  • Guido Imbens
  • Thai Pham
  • Stefan Wager

Abstract

There is a large literature on semiparametric estimation of average treatment effects under unconfounded treatment assignment in settings with a fixed number of covariates. More recently attention has focused on settings with a large number of covariates. In this paper we extend lessons from the earlier literature to this new setting. We propose that in addition to reporting point estimates and standard errors, researchers report results from a number of supplementary analyses to assist in assessing the credibility of their estimates.

Suggested Citation

  • Susan Athey & Guido Imbens & Thai Pham & Stefan Wager, 2017. "Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges," Papers 1702.01250, arXiv.org.
  • Handle: RePEc:arx:papers:1702.01250
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1702.01250
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. José R. Zubizarreta, 2015. "Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 910-922, September.
    2. Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2016. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 288-301, April.
    3. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
    4. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    5. Athey, Susan & Imbens, Guido W. & Wager, Stefan, 2016. "Efficient Inference of Average Treatment Effects in High Dimensions via Approximate Residual Balancing," Research Papers 3408, Stanford University, Graduate School of Business.
    6. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    7. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    8. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    2. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    3. Michael Zimmert, 2018. "The Finite Sample Performance of Treatment Effects Estimators based on the Lasso," Papers 1805.05067, arXiv.org.
    4. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    5. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    6. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    7. Kevin P. Josey & Elizabeth Juarez‐Colunga & Fan Yang & Debashis Ghosh, 2021. "A framework for covariate balance using Bregman distances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 790-816, September.
    8. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    9. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    10. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    11. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    12. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    13. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    14. Pierre Chausse & George Luta, 2017. "Casual Inference using Generalized Empirical Likelihood Methods," Working Papers 1707, University of Waterloo, Department of Economics, revised Dec 2017.
    15. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 61/13, Institute for Fiscal Studies.
    16. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    17. Chris Muris, 2020. "Efficient GMM Estimation with Incomplete Data," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 518-530, July.
    18. Arun Advani & Toru Kitagawa & Tymon Słoczyński, 2019. "Mostly harmless simulations? Using Monte Carlo studies for estimator selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 893-910, September.
    19. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    20. Bryan S. Graham & Guido W. Imbens & Geert Ridder, 2020. "Identification and Efficiency Bounds for the Average Match Function Under Conditionally Exogenous Matching," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 303-316, April.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1702.01250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.