Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Susan Athey & Guido Imbens & Thai Pham & Stefan Wager, 2017. "Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges," American Economic Review, American Economic Association, vol. 107(5), pages 278-281, May.
References listed on IDEAS
- José R. Zubizarreta, 2015. "Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 910-922, September.
- Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2016.
"Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST),"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 288-301, April.
- Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2011. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," NBER Working Papers 16928, National Bureau of Economic Research, Inc.
- Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Athey, Susan & Imbens, Guido W. & Wager, Stefan, 2016. "Efficient Inference of Average Treatment Effects in High Dimensions via Approximate Residual Balancing," Research Papers 3408, Stanford University, Graduate School of Business.
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006.
"Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand,"
NBER Technical Working Papers
0330, National Bureau of Economic Research, Inc.
- Crump, Richard K. & Hotz, V. Joseph & Imbens, Guido W. & Mitnik, Oscar A., 2006. "Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand," IZA Discussion Papers 2347, Institute of Labor Economics (IZA).
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand," Working Papers 0608, University of Miami, Department of Economics.
- Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012.
"Inverse Probability Tilting for Moment Condition Models with Missing Data,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
- Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2008. "Inverse Probability Tilting for Moment Condition Models with Missing Data," NBER Working Papers 13981, National Bureau of Economic Research, Inc.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Michael Zimmert, 2018. "The Finite Sample Performance of Treatment Effects Estimators based on the Lasso," Papers 1805.05067, arXiv.org.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017.
"The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation,"
Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2015. "The finite sample performance of semi- and nonparametric estimators for treatment effects and policy evaluation," FSES Working Papers 454, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2015. "The Finite Sample Performance of Semi- and Nonparametric Estimators for Treatment Effects and Policy Evaluation," IZA Discussion Papers 8756, Institute of Labor Economics (IZA).
- Kevin P. Josey & Elizabeth Juarez‐Colunga & Fan Yang & Debashis Ghosh, 2021. "A framework for covariate balance using Bregman distances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 790-816, September.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
- Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Kitagawa, Toru & Muris, Chris, 2016.
"Model averaging in semiparametric estimation of treatment effects,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 46/15, Institute for Fiscal Studies.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP46/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022.
"Covariate distribution balance via propensity scores,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2018. "Covariate Distribution Balance via Propensity Scores," Papers 1810.01370, arXiv.org, revised Apr 2020.
- Pierre Chausse & George Luta, 2017. "Casual Inference using Generalized Empirical Likelihood Methods," Working Papers 1707, University of Waterloo, Department of Economics, revised Dec 2017.
- Toru Kitagawa & Chris Muris, 2013.
"Covariate selection and model averaging in semiparametric estimation of treatment effects,"
CeMMAP working papers
61/13, Institute for Fiscal Studies.
- Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP61/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022.
"Semiparametrically efficient estimation of the average linear regression function,"
Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
- Bryan S. Graham & Cristine Campos de Xavier Pinto, 2018. "Semiparametrically Efficient Estimation of the Average Linear Regression Function," NBER Working Papers 25234, National Bureau of Economic Research, Inc.
- Bryan S. Graham & Cristine Campos de Xavier Pinto, 2018. "Semiparametrically efficient estimation of the average linear regression function," CeMMAP working papers CWP62/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Bryan S. Graham & Cristine Campos de Xavier Pinto, 2018. "Semiparametrically efficient estimation of the average linear regression function," Papers 1810.12511, arXiv.org.
- Chris Muris, 2020. "Efficient GMM Estimation with Incomplete Data," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 518-530, July.
- Arun Advani & Toru Kitagawa & Tymon Słoczyński, 2019.
"Mostly harmless simulations? Using Monte Carlo studies for estimator selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 893-910, September.
- Arun Advani & Toru Kitagawa & Tymon S{l}oczy'nski, 2018. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," Papers 1809.09527, arXiv.org, revised Apr 2019.
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," CAGE Online Working Paper Series 411, Competitive Advantage in the Global Economy (CAGE).
- Advani, Arun & Kitagawa, Toru & Słoczyński, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," The Warwick Economics Research Paper Series (TWERPS) 1192, University of Warwick, Department of Economics.
- Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
- Bryan S. Graham & Guido W. Imbens & Geert Ridder, 2020.
"Identification and Efficiency Bounds for the Average Match Function Under Conditionally Exogenous Matching,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 303-316, April.
- Bryan S. Graham & Guido Imbens & Geert Ridder, 2016. "Identification and efficiency bounds for the average match function under conditionally exogenous matching," CeMMAP working papers CWP10/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Bryan S. Graham & Guido W. Imbens & Geert Ridder, 2016. "Identification and Efficiency Bounds for the Average Match Function under Conditionally Exogenous Matching," NBER Working Papers 22098, National Bureau of Economic Research, Inc.
More about this item
JEL classification:
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2017-11-05 (Econometrics)
- NEP-EXP-2017-11-05 (Experimental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1702.01250. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.