IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v57y2014i4p505-525.html
   My bibliography  Save this article

Modeling Impact of Development Trajectories and a Global Agreement on Reducing Emissions from Deforestation on Congo Basin Forests by 2030

Author

Listed:
  • A. Mosnier
  • P. Havlík
  • M. Obersteiner
  • K. Aoki
  • E. Schmid
  • S. Fritz
  • I. McCallum
  • S. Leduc

Abstract

The Congo Basin encompasses the second largest rainforest area after the Amazon but the Congo Basin rainforest has been more preserved during the last decades with a much lower deforestation rate. At the same time, the region remains one of the least developed in the world. We use the partial equilibrium model GLOBIOM for the global agricultural, forestry and bioenergy sectors that seeks to find optimal land use options by spatially representing land qualities. We show the trade-offs between achieving agricultural growth at the expense of forests and protecting forests at the expense of agriculture development in the Congo Basin. The realization of the transportation infrastructures, which are already planned and funded, could multiply deforestation by three. In contrast, a global agreement on reduction of total emissions from deforestation could achieve important cuts in GHG emissions from deforestation in the Congo Basin. However, it could lead to substantial increases in food imports and food prices, which are in contradiction with the food security objectives. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • A. Mosnier & P. Havlík & M. Obersteiner & K. Aoki & E. Schmid & S. Fritz & I. McCallum & S. Leduc, 2014. "Modeling Impact of Development Trajectories and a Global Agreement on Reducing Emissions from Deforestation on Congo Basin Forests by 2030," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(4), pages 505-525, April.
  • Handle: RePEc:kap:enreec:v:57:y:2014:i:4:p:505-525
    DOI: 10.1007/s10640-012-9618-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-012-9618-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-012-9618-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spreen, Thomas H., 2006. "Price Endogenous Mathematical Programming Models and Trade Analysis," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(2), pages 249-253, August.
    2. You, Liangzhi & Wood, Stanley, 2006. "An entropy approach to spatial disaggregation of agricultural production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 329-347, October.
    3. Juma, Calestous, 2011. "The New Harvest: Agricultural Innovation in Africa," OUP Catalogue, Oxford University Press, number 9780199783199.
    4. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    5. Bruce A. McCarl & Thomas H. Spreen, 1980. "Price Endogenous Mathematical Programming As a Tool for Sector Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 87-102.
    6. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    7. Schneider, Uwe A. & Havlík, Petr & Schmid, Erwin & Valin, Hugo & Mosnier, Aline & Obersteiner, Michael & Böttcher, Hannes & Skalský, Rastislav & Balkovic, Juraj & Sauer, Timm & Fritz, Steffen, 2011. "Impacts of population growth, economic development, and technical change on global food production and consumption," Agricultural Systems, Elsevier, vol. 104(2), pages 204-215, February.
    8. Minten, Bart & Kyle, Steven, 1999. "The effect of distance and road quality on food collection, marketing margins, and traders' wages: evidence from the former Zaire," Journal of Development Economics, Elsevier, vol. 60(2), pages 467-495, December.
    9. Pfaff, Alexander S. P., 1999. "What Drives Deforestation in the Brazilian Amazon?: Evidence from Satellite and Socioeconomic Data," Journal of Environmental Economics and Management, Elsevier, vol. 37(1), pages 26-43, January.
    10. Cerutti, Paolo Omar & Tacconi, Luca & Nasi, Robert & Lescuyer, Guillaume, 2011. "Legal vs. certified timber: Preliminary impacts of forest certification in Cameroon," Forest Policy and Economics, Elsevier, vol. 13(3), pages 184-190, March.
    11. Angelsen, Arild & Kaimowitz, David, 1999. "Rethinking the Causes of Deforestation: Lessons from Economic Models," The World Bank Research Observer, World Bank, vol. 14(1), pages 73-98, February.
    12. Supee Teravaninthorn & Gaël Raballand, 2009. "Transport Prices and Costs in Africa : A Review of the International Corridors," World Bank Publications - Books, The World Bank Group, number 6610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Pelletier, Johanne & Horning, Ned & Laporte, Nadine & Samndong, Raymond Achu & Goetz, Scott, 2018. "Anticipating social equity impacts in REDD+ policy design: An example from the Democratic Republic of Congo," Land Use Policy, Elsevier, vol. 75(C), pages 102-115.
    3. Shapiro, Aurélie & d’Annunzio, Rémi & Desclée, Baudouin & Jungers, Quentin & Kondjo, Héritier Koy & Iyanga, Josefina Mbulito & Gangyo, Francis Inicko & Nana, Tatiana & Obame, Conan Vassily & Milandou,, 2023. "Small scale agriculture continues to drive deforestation and degradation in fragmented forests in the Congo Basin (2015–2020)," Land Use Policy, Elsevier, vol. 134(C).
    4. Nelson B. Villoria & Derek Byerlee & James Stevenson, 2014. "The Effects of Agricultural Technological Progress on Deforestation: What Do We Really Know?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 36(2), pages 211-237.
    5. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosnier, A. & Havlík, P. & Valin, H. & Baker, J. & Murray, B. & Feng, S. & Obersteiner, M. & McCarl, B.A. & Rose, S.K. & Schneider, U.A., 2013. "Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth," Energy Policy, Elsevier, vol. 57(C), pages 602-614.
    2. Valin, Hugo & Havlik, Petr & Mosnier, Aline & Obersteiner, Michael, 2010. "Climate Change Mitigation And Future Food Consumption Patterns," 115th Joint EAAE/AAEA Seminar, September 15-17, 2010, Freising-Weihenstephan, Germany 116392, European Association of Agricultural Economists.
    3. Valin, Hugo & Havlik, Petr & Mosnier, Aline & Obersteiner, Michael, 2012. "Impacts of Alternative Climate Change Mitigation Policies on Food Consumption under various Diet Scenarios," Conference papers 332253, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    5. Keles, Derya & Choumert-Nkolo, Johanna & Combes Motel, Pascale & Nazindigouba Kéré, Eric, 2018. "Does the expansion of biofuels encroach on the forest?," Journal of Forest Economics, Elsevier, vol. 33(C), pages 75-82.
    6. Andrade de Sá, Saraly & Palmer, Charles & di Falco, Salvatore, 2013. "Dynamics of indirect land-use change: Empirical evidence from Brazil," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 377-393.
    7. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    8. Chen, Xiaoguang & Khanna, Madhu, 2014. "Indirect Land Use Effects of Corn Ethanol in the U.S: Implications for the Conservation Reserve Program," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170284, Agricultural and Applied Economics Association.
    9. Joel Hourticq & Carole Megevand & Eric Tollens & Johanna Wehkamp & Hari Dulal, 2013. "Deforestation Trends in the Congo Basin : Agriculture [Dynamiques de déforestation dans le bassin du Congo : Réconcilier la croissance économique et la protection de la forêt - Document de travail ," World Bank Publications - Reports 16645, The World Bank Group.
    10. Chih-Chun Kung & Hualin Xie & Tao Wu & Shih-Chih Chen, 2014. "Biofuel for Energy Security: An Examination on Pyrolysis Systems with Emissions from Fertilizer and Land-Use Change," Sustainability, MDPI, vol. 6(2), pages 1-18, January.
    11. Oliver, Anthony & Khanna, Madhu, 2013. "Renewable Energy Policies for the Electricity, Transportation, and Agricultural Sectors: Complements or Substitutes," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150406, Agricultural and Applied Economics Association.
    12. David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
    13. Brenton, Paul & Portugal-Perez, Alberto & Regolo, Julie, 2014. "Food prices, road infrastructure, and market integration in Central and Eastern Africa," Policy Research Working Paper Series 7003, The World Bank.
    14. Hof, John G. & Loomis, John B., 1983. "A Recreation Optimization Model Based On The Travel Cost Method," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 8(1), pages 1-10, July.
    15. Pascale COMBES MOTEL & Jean-Louis COMBES & Catherine ARAUJO BONJEAN & Claudio ARAUJO & Eustaquio J. REIS, 2010. "Does Land Tenure Insecurity Drive Deforestation in the Brazilian Amazon?," Working Papers 201013, CERDI.
    16. Diermeier, Matthias & Schmidt, Torsten, 2014. "Oil price effects on land use competition: an empirical analysis," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), pages 1-17.
    17. Araujo, Claudio & Combes, Jean-Louis & Féres, José Gustavo, 2019. "Determinants of Amazon deforestation: the role of off-farm income," Environment and Development Economics, Cambridge University Press, vol. 24(2), pages 138-156, April.
    18. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    19. Lambert, David K. & McCarl, Bruce A. & He, Quifen & Kaylen, Michael S. & Rosenthal, Wesley & Chang, Ching-Cheng & Nayda, W.I., 1995. "Uncertain Yields In Sectoral Welfare Analysis: An Application To Global Warming," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 27(2), pages 1-14, December.
    20. Doupe, Patrick, 2014. "The costs of error in setting reference rates for reduced deforestation," Working Papers 249497, Australian National University, Centre for Climate Economics & Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:57:y:2014:i:4:p:505-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.