IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v32y2013i1p170-185.html
   My bibliography  Save this article

Successive Sample Selection and Its Relevance for Management Decisions

Author

Listed:
  • Stephan Wachtel

    (Goethe University Frankfurt, 60323 Frankfurt, Germany)

  • Thomas Otter

    (Goethe University Frankfurt, 60323 Frankfurt, Germany)

Abstract

We reanalyze endogenous sample selection in the context of customer scoring, targeting, and influencing decisions. Scoring relies on ordered lists of probabilities that customers act in a way that contributes revenues, e.g., purchase something from the firm. Targeting identifies constrained sets of covariate patterns associated with high probabilities of these acts. Influencing aims at changing the probabilities that individual customers act accordingly through marketing activities. We show that successful targeting and influencing decisions require inference that controls for endogenous selection, whereas scoring can proceed relatively successfully based on simpler models that provide (local) approximations, capitalizing on spurious effects of observed covariates. To facilitate the type of inference required for targeting and influencing, we develop a prior that frees the analyst from having to specify (often arbitrary) exclusion restrictions for model identification a priori or to explicitly compare all possible models. We cover exclusions of observed as well as unobserved covariates that may cause the successive selections to be dependent. We automatically infer the dependence structure among selection stages using Markov chain Monte Carlo-based variable selection, before identifying the scale of latent variables. The adaptive parsimony achieved through our prior is particularly helpful in applications where the number of successive selections exceeds two, a relevant but underresearched situation.

Suggested Citation

  • Stephan Wachtel & Thomas Otter, 2013. "Successive Sample Selection and Its Relevance for Management Decisions," Marketing Science, INFORMS, vol. 32(1), pages 170-185, September.
  • Handle: RePEc:inm:ormksc:v:32:y:2013:i:1:p:170-185
    DOI: 10.1287/mksc.1120.0754
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1120.0754
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1120.0754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. J. Brown & M. Vannucci & T. Fearn, 1998. "Multivariate Bayesian variable selection and prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 627-641.
    2. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    3. Eun-Ju Lee & David Eastwood & Jinkook Lee, 2004. "A Sample Selection Model of Consumer Adoption of Computer Banking," Journal of Financial Services Research, Springer;Western Finance Association, vol. 26(3), pages 263-275, December.
    4. Tülin Erdem, 1996. "A Dynamic Analysis of Market Structure Based on Panel Data," Marketing Science, INFORMS, vol. 15(4), pages 359-378.
    5. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    6. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    7. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    8. Anindya Ghose & Sha Yang, 2009. "An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets," Management Science, INFORMS, vol. 55(10), pages 1605-1622, October.
    9. Anindya Ghose & Sha Yang, 2007. "An Empirical Analysis of Search Engine Advertising: Sponsored Search and Cross-Selling in Electronic Markets," Working Papers 07-35, NET Institute, revised Sep 2007.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Qian & Hui Xie, 2022. "Simplifying Bias Correction for Selective Sampling: A Unified Distribution-Free Approach to Handling Endogenously Selected Samples," Marketing Science, INFORMS, vol. 41(2), pages 336-360, March.
    2. Carson, Richard T. & Louviere, Jordan J., 2014. "Statistical properties of consideration sets," Journal of choice modelling, Elsevier, vol. 13(C), pages 37-48.
    3. Longxiu Tian & Fred M. Feinberg, 2020. "Optimizing Price Menus for Duration Discounts: A Subscription Selectivity Field Experiment," Marketing Science, INFORMS, vol. 39(6), pages 1181-1198, November.
    4. Wayne Taylor & Brett Hollenbeck, 2021. "Leveraging loyalty programs using competitor based targeting," Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 417-455, December.
    5. Yi-Lin Tsai & Elisabeth Honka, 2021. "Informational and Noninformational Advertising Content," Marketing Science, INFORMS, vol. 40(6), pages 1030-1058, November.
    6. Peter Ebbes & Oded Netzer, 2022. "Using Social Network Activity Data to Identify and Target Job Seekers," Management Science, INFORMS, vol. 68(4), pages 3026-3046, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maksym, Obrizan, 2010. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable," MPRA Paper 28577, University Library of Munich, Germany.
    2. Fernandez-Cornejo, Jorge & Wechsler, Seth James, 2012. "Fifteen Years Later: Examining the Adoption of Bt Corn Varieties by U.S. Farmers," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124257, Agricultural and Applied Economics Association.
    3. Martijn van Hasselt, 2005. "Bayesian Sampling Algorithms for the Sample Selection and Two-Part Models," Computing in Economics and Finance 2005 241, Society for Computational Economics.
    4. Zhang, Rong & Inder, Brett A. & Zhang, Xibin, 2015. "Bayesian estimation of a discrete response model with double rules of sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 81-96.
    5. Maarten Goos & Anna Salomons, 2017. "Measuring teaching quality in higher education: assessing selection bias in course evaluations," Research in Higher Education, Springer;Association for Institutional Research, vol. 58(4), pages 341-364, June.
    6. Glenn W. Harrison & Morten I. Lau & Hong Il Yoo, 2020. "Risk Attitudes, Sample Selection, and Attrition in a Longitudinal Field Experiment," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 552-568, July.
    7. John Hudson, 2012. "Internet Banking and the Marginal Internet User," Department of Economics Working Papers 7/12, University of Bath, Department of Economics.
    8. Omar Paccagnella, 2011. "Anchoring vignettes with sample selection due to non‐response," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(3), pages 665-687, July.
    9. Prabuddha De & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2010. "Technology Usage and Online Sales: An Empirical Study," Management Science, INFORMS, vol. 56(11), pages 1930-1945, November.
    10. van Hasselt, Martijn, 2011. "Bayesian inference in a sample selection model," Journal of Econometrics, Elsevier, vol. 165(2), pages 221-232.
    11. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    12. Navdeep Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    13. D'Addio, Anna Cristina & De Greef, Isabelle & Rosholm, Michael, 2002. "Assessing Unemployment Traps in Belgium Using Panel Data Sample Selection Models," IZA Discussion Papers 669, Institute of Labor Economics (IZA).
    14. Särndal Carl-Erik & Lundquist Peter, 2017. "Inconsistent Regression and Nonresponse Bias: Exploring Their Relationship as a Function of Response Imbalance," Journal of Official Statistics, Sciendo, vol. 33(3), pages 709-734, September.
    15. Myck, Michal & Nici?ska, Anna & Morawski, Leszek, 2009. "Count Your Hours: Returns to Education in Poland," IZA Discussion Papers 4332, Institute of Labor Economics (IZA).
    16. Paul Ellickson & Sanjog Misra, 2012. "Enriching interactions: Incorporating outcome data into static discrete games," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 1-26, March.
    17. Jochmans, Koen, 2015. "Multiplicative-error models with sample selection," Journal of Econometrics, Elsevier, vol. 184(2), pages 315-327.
    18. Victor Chernozhukov & Iv'an Fern'andez-Val & Siyi Luo, 2018. "Distribution Regression with Sample Selection, with an Application to Wage Decompositions in the UK," Papers 1811.11603, arXiv.org, revised Dec 2023.
    19. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    20. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:32:y:2013:i:1:p:170-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.