Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Yehua & Wang, Naisyin & Carroll, Raymond J., 2010. "Generalized Functional Linear Models With Semiparametric Single-Index Interactions," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 621-633.
- Bo-Cheng Wei & Jian-Qing Shi & Wing-Kam Fung & Yue-Qing Hu, 1998. "Testing for Varying Dispersion in Exponential Family Nonlinear Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 277-294, June.
- Gareth M. James & Peter Radchenko & Jinchi Lv, 2009. "DASSO: connections between the Dantzig selector and lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 127-142, January.
- Kato, Kengo, 2009. "On the degrees of freedom in shrinkage estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1338-1352, August.
- Ian T. Jolliffe, 1982. "A Note on the Use of Principal Components in Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(3), pages 300-303, November.
- Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
- Gareth M. James & Peter Radchenko, 2009. "A generalized Dantzig selector with shrinkage tuning," Biometrika, Biometrika Trust, vol. 96(2), pages 323-337.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Bradley Efron, 2004. "The Estimation of Prediction Error: Covariance Penalties and Cross-Validation," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 619-632, January.
- Burbea, Jacob & Rao, C. Radhakrishna, 1982. "Entropy differential metric, distance and divergence measures in probability spaces: A unified approach," Journal of Multivariate Analysis, Elsevier, vol. 12(4), pages 575-596, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vinciotti Veronica & Augugliaro Luigi & Abbruzzo Antonino & Wit Ernst C., 2016. "Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(3), pages 193-212, June.
- Augugliaro, Luigi & Mineo, Angelo & Wit, Ernst C., 2014. "dglars: An R Package to Estimate Sparse Generalized Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i08).
- Pircalabelu, Eugen & Artemiou, Andreas, 2021. "Graph informed sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
- Wit, Ernst C., 2018. "Big data and biostatistics: The death of the asymptotic Valhalla," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 30-33.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
- Feng Li & Lu Lin & Yuxia Su, 2013. "Variable selection and parameter estimation for partially linear models via Dantzig selector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 225-238, February.
- Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
- Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
- E. Androulakis & C. Koukouvinos, 2013. "A new variable selection method for uniform designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2564-2578, December.
- Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
- Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
- Hettihewa, Samanthala & Saha, Shrabani & Zhang, Hanxiong, 2018. "Does an aging population influence stock markets? Evidence from New Zealand," Economic Modelling, Elsevier, vol. 75(C), pages 142-158.
- Yongli Zhang & Xiaotong Shen, 2015. "Adaptive Modeling Procedure Selection by Data Perturbation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 541-551, October.
- Centofanti, Fabio & Fontana, Matteo & Lepore, Antonio & Vantini, Simone, 2022. "Smooth LASSO estimator for the Function-on-Function linear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
- Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
- James Younker, 2022. "Calculating Effective Degrees of Freedom for Forecast Combinations and Ensemble Models," Discussion Papers 2022-19, Bank of Canada.
- Kun Chen & Kung-Sik Chan & Nils Chr. Stenseth, 2014. "Source-Sink Reconstruction Through Regularized Multicomponent Regression Analysis-With Application to Assessing Whether North Sea Cod Larvae Contributed to Local Fjord Cod in Skagerrak," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 560-573, June.
- Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
- Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
- Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
- Hu, Qinqin & Zeng, Peng & Lin, Lu, 2015. "The dual and degrees of freedom of linearly constrained generalized lasso," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 13-26.
- Chun-Wei Zheng & Zong-Feng Qi & Qiao-Zhen Zhang & Min-Qian Liu, 2022. "A Method for Augmenting Supersaturated Designs with Newly Added Factors," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:75:y:2013:i:3:p:471-498. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.