IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v70y2009i1p59-77.html
   My bibliography  Save this article

Heteroscedasticity diagnostics for t linear regression models

Author

Listed:
  • Jin-Guan Lin
  • Li-Xing Zhu
  • Feng-Chang Xie

Abstract

No abstract is available for this item.

Suggested Citation

  • Jin-Guan Lin & Li-Xing Zhu & Feng-Chang Xie, 2009. "Heteroscedasticity diagnostics for t linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 59-77, June.
  • Handle: RePEc:spr:metrik:v:70:y:2009:i:1:p:59-77
    DOI: 10.1007/s00184-008-0179-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-008-0179-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-008-0179-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murray Aitkin, 1987. "Modelling Variance Heterogeneity in Normal Regression Using GLIM," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 332-339, November.
    2. Diblasi, Angela & Bowman, Adrian, 1997. "Testing for constant variance in a linear model," Statistics & Probability Letters, Elsevier, vol. 33(1), pages 95-103, April.
    3. J. L. Hutton & P. J. Solomon, 1997. "Parameter Orthogonality in Mixed Regression Models for Survival Data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 125-136.
    4. Bo-Cheng Wei & Jian-Qing Shi & Wing-Kam Fung & Yue-Qing Hu, 1998. "Testing for Varying Dispersion in Exponential Family Nonlinear Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 277-294, June.
    5. Barroso, Lúcia P. & Cordeiro, Gauss M., 2005. "Bartlett corrections in heteroskedastic t regression models," Statistics & Probability Letters, Elsevier, vol. 75(2), pages 86-96, November.
    6. Jin-Guan Lin & Bo-Cheng Wei & Nan-Song Zhang, 2004. "Varying Dispersion Diagnostics for Inverse Gaussian Regression Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(10), pages 1157-1170.
    7. Cysneiros, Francisco José A. & Paula, Gilberto A. & Galea, Manuel, 2007. "Heteroscedastic symmetrical linear models," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1084-1090, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariana C. Araújo & Audrey H. M. A. Cysneiros & Lourdes C. Montenegro, 2020. "Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models," Statistical Papers, Springer, vol. 61(1), pages 167-188, February.
    2. Kang-Ping Lu & Shao-Tung Chang, 2021. "Robust Algorithms for Change-Point Regressions Using the t -Distribution," Mathematics, MDPI, vol. 9(19), pages 1-28, September.
    3. Jin-Guan Lin & Ji Chen & Yong Li, 2012. "Bayesian Analysis of Student t Linear Regression with Unknown Change-Point and Application to Stock Data Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 203-217, October.
    4. Li, Ai-Ping & Xie, Feng-Chang, 2012. "Diagnostics for a class of survival regression models with heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4204-4214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin-Guan Lin & Li-Xing Zhu & Chun-Zheng Cao & Yong Li, 2011. "Tests of heteroscedasticity and correlation in multivariate t regression models with AR and ARMA errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1509-1531, August.
    2. Chun-Zheng Cao & Jin-Guan Lin & Li-Xing Zhu, 2010. "Heteroscedasticity and/or autocorrelation diagnostics in nonlinear models with AR(1) and symmetrical errors," Statistical Papers, Springer, vol. 51(4), pages 813-836, December.
    3. Xie, Feng-Chang & Wei, Bo-Cheng & Lin, Jin-Guan, 2009. "Homogeneity diagnostics for skew-normal nonlinear regression models," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 821-827, March.
    4. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2010. "Testing for varying zero-inflation and dispersion in generalized Poisson regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1509-1522.
    5. Liucang Wu & Huiqiong Li, 2012. "Variable selection for joint mean and dispersion models of the inverse Gaussian distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 795-808, August.
    6. Jin-Guan Lin & Yan-Yong Zhao & Hong-Xia Wang, 2015. "Heteroscedasticity diagnostics in varying-coefficient partially linear regression models and applications in analyzing Boston housing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2432-2448, November.
    7. Cibele M. Russo & Gilberto A. Paula & Francisco Jos� A. Cysneiros & Reiko Aoki, 2012. "Influence diagnostics in heteroscedastic and/or autoregressive nonlinear elliptical models for correlated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1049-1067, October.
    8. Dette, Holger & Marchlewski, Mareen, 2007. "A test for the parametric form of the variance function in apartial linear regression model," Technical Reports 2007,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    10. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    11. Villegas, Cristian & Paula, Gilberto A. & Cysneiros, Francisco José A. & Galea, Manuel, 2013. "Influence diagnostics in generalized symmetric linear models," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 161-170.
    12. Francisco Louzada-Neto, 2001. "Bayesian Analysis for Hazard Models with Non-constant Shape Parameter," Computational Statistics, Springer, vol. 16(2), pages 243-254, July.
    13. Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    14. Tsung-Shan Tsou, 2005. "Inferences of variance function - a parametric robust way," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 785-796.
    15. Li, Zhaoyuan & Yao, Jianfeng, 2019. "Testing for heteroscedasticity in high-dimensional regressions," Econometrics and Statistics, Elsevier, vol. 9(C), pages 122-139.
    16. Holger Dette & Natalie Neumeyer & Ingrid Van Keilegom, 2007. "A new test for the parametric form of the variance function in non‐parametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 903-917, November.
    17. Cheng, Tsung-Chi, 2011. "Robust diagnostics for the heteroscedastic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1845-1866, April.
    18. Mariana C. Araújo & Audrey H. M. A. Cysneiros & Lourdes C. Montenegro, 2020. "Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models," Statistical Papers, Springer, vol. 61(1), pages 167-188, February.
    19. Dette, Holger & Hetzler, Benjamin, 2006. "A simple test for the parametric form of the variance function in nonparametric regression," Technical Reports 2006,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Lan Wang & Xiao-Hua Zhou, 2007. "Assessing the Adequacy of Variance Function in Heteroscedastic Regression Models," Biometrics, The International Biometric Society, vol. 63(4), pages 1218-1225, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:70:y:2009:i:1:p:59-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.