IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v54y2002i1p1-18.html
   My bibliography  Save this article

Generalized Pseudo-Likelihood Estimates for Markov Random Fields on Lattice

Author

Listed:
  • Fuchun Huang
  • Yosihiko Ogata

Abstract

No abstract is available for this item.

Suggested Citation

  • Fuchun Huang & Yosihiko Ogata, 2002. "Generalized Pseudo-Likelihood Estimates for Markov Random Fields on Lattice," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 1-18, March.
  • Handle: RePEc:spr:aistmt:v:54:y:2002:i:1:p:1-18
    DOI: 10.1023/A:1016170102988
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1016170102988
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1016170102988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jens Jensen & Hans Künsch, 1994. "On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 475-486, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kohli, P. & Pourahmadi, M., 2014. "Some prediction problems for stationary random fields with quarter-plane past," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 112-125.
    2. Lim, Johan & Wang, Xinlei & Sherman, Michael, 2007. "An adjustment for edge effects using an augmented neighborhood model in the spatial auto-logistic model," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3679-3688, May.
    3. Jin, Ick Hoon & Liang, Faming, 2014. "Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 402-416.
    4. Bee, Marco & Espa, Giuseppe & Giuliani, Diego, 2015. "Approximate maximum likelihood estimation of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 14-26.
    5. Lim, Johan & Lee, Kiseop & Yu, Donghyeon & Liu, Haiyan & Sherman, Michael, 2012. "Parameter estimation in the spatial auto-logistic model with working independent subblocks," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4421-4432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    2. repec:jss:jstsof:12:i06 is not listed on IDEAS
    3. Andrea Pallini, 2000. "Resampling configurations of points through coding schemes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 9(1), pages 159-182, January.
    4. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    5. Chen, Shyh-Huei & Ip, Edward H. & Wang, Yuchung J., 2011. "Gibbs ensembles for nearly compatible and incompatible conditional models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1760-1769, April.
    6. Jean-François Coeurjolly & Ege Rubak, 2013. "Fast Covariance Estimation for Innovations Computed from a Spatial Gibbs Point Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 669-684, December.
    7. Winkler Gerhard, 2001. "A Stochastic Algorithm For Maximum Likelihood Estimation In Imaging," Statistics & Risk Modeling, De Gruyter, vol. 19(2), pages 101-120, February.
    8. Levada Alexandre L., 2016. "Information geometry, simulation and complexity in Gaussian random fields," Monte Carlo Methods and Applications, De Gruyter, vol. 22(2), pages 81-107, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:54:y:2002:i:1:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.