IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0208780.html
   My bibliography  Save this article

Clusters of high abundance of plants detected from local indicators of spatial association (LISA) in a semi-deciduous tropical forest

Author

Listed:
  • José Ramón Martínez Batlle
  • Yntze van der Hoek

Abstract

Plants are rarely randomly distributed across communities, and patchiness is a common spatial pattern in most tropical forests. Clusters of high density of plant individuals are related to internal and external forces, as well as to historical events. The detection of aggregated patterns of plant individuals allows for a better understanding of the internal and external factors that guide the distribution of species. The aim of this research was to detect and characterize clusters of high abundance of plants and species richness in semi-deciduous forests in the Dominican Republic. For this, we collected vegetation data from 575 quadrats in 23 transects (2300 m2 in total) within the Ocoa river basin. Using local Moran’s I statistics, we isolated 18 quadrats of high density of individuals. We show that density of individuals can be 2.5 times larger on average than in non-aggregated quadrats, and can reach higher values for shrubs species as well as for palms and vines species. In addition, we found that shrub species are the most abundant group in aggregated quadrats, and density of tree species is significantly smaller than that of shrub species. High density quadrats are predominantly occupied by shrubs, palms and vines, following patterns of species composition and lithology. Detecting clusters of high density of individuals could help in the efficient assessment of richness in semi-deciduous tropical forests, and may support new conservation practices for this valuable but threatened ecosystem.

Suggested Citation

  • José Ramón Martínez Batlle & Yntze van der Hoek, 2018. "Clusters of high abundance of plants detected from local indicators of spatial association (LISA) in a semi-deciduous tropical forest," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-16, December.
  • Handle: RePEc:plo:pone00:0208780
    DOI: 10.1371/journal.pone.0208780
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208780
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0208780&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0208780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wickham, Hadley, 2007. "Reshaping Data with the reshape Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i12).
    2. Luc Anselin & Sergio J. Rey, 2010. "Perspectives on Spatial Data Analysis," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 1-20, Springer.
    3. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    4. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Li & Peng Zheng & Wenbin Pan, 2022. "Spatial-Temporal Variation and Tradeoffs/Synergies Analysis on Multiple Ecosystem Services: A Case Study in Fujian," Sustainability, MDPI, vol. 14(5), pages 1-25, March.
    2. Yaqi Cheng & Wei Song & Hao Yu & Xi Wei & Shuangqing Sheng & Bo Liu & He Gao & Junfang Li & Congjie Cao & Dazhi Yang, 2023. "Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China," Land, MDPI, vol. 12(4), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    2. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    3. Arii, Ken & Caspersen, John P. & Jones, Trevor A. & Thomas, Sean C., 2008. "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models," Ecological Modelling, Elsevier, vol. 211(3), pages 251-266.
    4. Augustinus, Benno A. & Blum, Moshe & Citterio, Sandra & Gentili, Rodolfo & Helman, David & Nestel, David & Schaffner, Urs & Müller-Schärer, Heinz & Lensky, Itamar M., 2022. "Ground-truthing predictions of a demographic model driven by land surface temperatures with a weed biocontrol cage experiment," Ecological Modelling, Elsevier, vol. 466(C).
    5. John I. Carruthers & Selma Hepp & Gerrit-Jan Knaap & Robert N. Renner, 2012. "The American Way of Land Use," International Regional Science Review, , vol. 35(3), pages 267-302, July.
    6. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    7. Oumarou Zallé & Idrissa M. Ouédraogo, 2021. "Spillover effects of corruption and democracy on territorial attractiveness of foreign direct investment in sub‐Saharan Africa," African Development Review, African Development Bank, vol. 33(4), pages 756-769, December.
    8. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    9. Julio Cesar Alonso Cifuentes & Jaime Andres Carabali, 2019. "Breve Tuturial para visualizar y Calcular Métricas de Redes (grafos) en R (para Económisas)," Icesi Economics Lecture Notes 18170, Universidad Icesi.
    10. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    11. Nijkamp Peter, 2012. "Behaviour of Humans and Behaviour of Models in Dynamic Space," Quaestiones Geographicae, Sciendo, vol. 31(2), pages 7-19, June.
    12. Guangshun Bai & Xuemei Yang & Guangxin Bai & Zhigang Kong & Jieyong Zhu & Shitao Zhang, 2024. "Examining the Controls on the Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Ms 8.0 Earthquake, China, Using Methods of Spatial Point Pattern Analysis," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    13. Vijay Rajagopal & Gregory Bass & Cameron G Walker & David J Crossman & Amorita Petzer & Anthony Hickey & Ivo Siekmann & Masahiko Hoshijima & Mark H Ellisman & Edmund J Crampin & Christian Soeller, 2015. "Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-31, September.
    14. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    15. Liao, Jinbao & Li, Zhenqing & Quets, Jan J. & Nijs, Ivan, 2013. "Effects of space partitioning in a plant species diversity model," Ecological Modelling, Elsevier, vol. 251(C), pages 271-278.
    16. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    17. Éric Marcon & Florence Puech, 2023. "Mapping distributions in non-homogeneous space with distance-based methods [Cartographie des distributions dans un espace non homogène à l'aide de méthodes basées sur la distance]," Post-Print hal-04345149, HAL.
    18. Herguido Sevillano, E. & Lavado Contador, J.F. & Schnabel, S. & Pulido, M. & Ibáñez, J., 2018. "Using spatial models of temporal tree dynamics to evaluate the implementation of EU afforestation policies in rangelands of SW Spain," Land Use Policy, Elsevier, vol. 78(C), pages 166-175.
    19. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    20. Miller, Christine M.F. & Waterhouse, Hannah & Harter, Thomas & Fadel, James G. & Meyer, Deanne, 2020. "Quantifying the uncertainty in nitrogen application and groundwater nitrate leaching in manure based cropping systems," Agricultural Systems, Elsevier, vol. 184(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0208780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.