IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v50y2016i3p966-981.html
   My bibliography  Save this article

Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering

Author

Listed:
  • Hilmi Berk Celikoglu

    (Faculty of Civil Engineering, Department of Civil Engineering, Technical University of Istanbul, Ayazaga Campus, Maslak, Istanbul, 34469 Turkey)

  • Mehmet Ali Silgu

    (Faculty of Civil Engineering, Department of Civil Engineering, Technical University of Istanbul, Ayazaga Campus, Maslak, Istanbul, 34469 Turkey)

Abstract

In this paper, we evaluate the performance of a dynamic approach to classifying flow patterns reconstructed by a switching-mode macroscopic flow model considering a multivariate clustering method. To remove noise and tolerate a wide scatter of traffic data, filters are applied before the overall modeling process. Filtered data are dynamically and simultaneously input to the density estimation and traffic flow modeling processes. A modified cell transmission model simulates traffic flow to explicitly account for flow condition transitions considering wave propagations throughout a freeway test stretch. We use flow dynamics specific to each of the cells to determine the mode of prevailing traffic conditions. Flow dynamics are then reconstructed by neural methods. By using two methods in part, i.e., dynamic classification and nonhierarchical clustering, classification of flow patterns over the fundamental diagram is obtained by considering traffic density as a pattern indicator. The fundamental diagram of speed-flow is dynamically updated to specify the current corresponding flow pattern. The dynamic classification approach returned promising results in capturing sudden changes on test stretch flow patterns as well as performance compared to multivariate clustering. The dynamic methods applied here are open to use in practice within intelligent management strategies, including incident detection and control and variable speed management.

Suggested Citation

  • Hilmi Berk Celikoglu & Mehmet Ali Silgu, 2016. "Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering," Transportation Science, INFORMS, vol. 50(3), pages 966-981, August.
  • Handle: RePEc:inm:ortrsc:v:50:y:2016:i:3:p:966-981
    DOI: 10.1287/trsc.2015.0653
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2015.0653
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2015.0653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yibing Wang & Markos Papageorgiou & Albert Messmer, 2007. "Real-Time Freeway Traffic State Estimation Based on Extended Kalman Filter: A Case Study," Transportation Science, INFORMS, vol. 41(2), pages 167-181, May.
    2. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    3. Dougherty, Mark S. & Cobbett, Mark R., 1997. "Short-term inter-urban traffic forecasts using neural networks," International Journal of Forecasting, Elsevier, vol. 13(1), pages 21-31, March.
    4. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    5. Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
    6. Yannis Pavlis & Will Recker, 2009. "A Mathematical Logic Approach for the Transformation of the Linear Conditional Piecewise Functions of Dispersion-and-Store and Cell Transmission Traffic Flow Models into Linear Mixed-Integer Form," Transportation Science, INFORMS, vol. 43(1), pages 98-116, February.
    7. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    8. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    9. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    10. Hong K. Lo, 2001. "A Cell-Based Traffic Control Formulation: Strategies and Benefits of Dynamic Timing Plans," Transportation Science, INFORMS, vol. 35(2), pages 148-164, May.
    11. Shane Velan & Michael Florian, 2002. "A Note on the Entropy Solutions of the Hydrodynamic Model of Traffic Flow," Transportation Science, INFORMS, vol. 36(4), pages 435-446, November.
    12. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Unsok Ryu & Jian Wang & Unjin Pak & Sonil Kwak & Kwangchol Ri & Junhyok Jang & Kyongjin Sok, 2022. "A clustering based traffic flow prediction method with dynamic spatiotemporal correlation analysis," Transportation, Springer, vol. 49(3), pages 951-988, June.
    2. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    3. Cheng, Zeyang & Wang, Wei & Lu, Jian & Xing, Xue, 2020. "Classifying the traffic state of urban expressways: A machine-learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 411-428.
    4. Liu, Qingchao & Cai, Yingfeng & Jiang, Haobin & Lu, Jian & Chen, Long, 2018. "Traffic state prediction using ISOMAP manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 532-541.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    2. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.
    3. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    4. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    5. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    6. Zheng, Zuduo & Su, Dongcai, 2016. "Traffic state estimation through compressed sensing and Markov random field," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 525-554.
    7. Duret, Aurélien & Yuan, Yufei, 2017. "Traffic state estimation based on Eulerian and Lagrangian observations in a mesoscopic modeling framework," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 51-71.
    8. Lu, Yadong & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Chen, Wenqin, 2008. "Explicit construction of entropy solutions for the Lighthill-Whitham-Richards traffic flow model with a piecewise quadratic flow-density relationship," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 355-372, May.
    9. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    10. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    11. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    12. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    13. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    14. van Erp, Paul B.C. & Knoop, Victor L. & Hoogendoorn, Serge P., 2018. "Macroscopic traffic state estimation using relative flows from stationary and moving observers," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 281-299.
    15. Arwa S. Sayegh & Richard D. Connors & James E. Tate, 2018. "Uncertainty Propagation from the Cell Transmission Traffic Flow Model to Emission Predictions: A Data-Driven Approach," Service Science, INFORMS, vol. 52(6), pages 1327-1346, December.
    16. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.
    17. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    18. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    19. Carolina Osorio & Gunnar Flötteröd, 2015. "Capturing Dependency Among Link Boundaries in a Stochastic Dynamic Network Loading Model," Transportation Science, INFORMS, vol. 49(2), pages 420-431, May.
    20. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:50:y:2016:i:3:p:966-981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.