IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v41y2007i2p167-181.html
   My bibliography  Save this article

Real-Time Freeway Traffic State Estimation Based on Extended Kalman Filter: A Case Study

Author

Listed:
  • Yibing Wang

    (Dynamic Systems and Simulation Laboratory, Technical University of Crete, 73100 Chania, Greece)

  • Markos Papageorgiou

    (Dynamic Systems and Simulation Laboratory, Technical University of Crete, 73100 Chania, Greece)

  • Albert Messmer

    (Groebenseeweg 2, D-82402, Seeshaupt, Germany)

Abstract

This paper presents a case study of real-time traffic state estimation. The adopted general approach to the design of universal traffic state estimators for freeway stretches is based on stochastic macroscopic traffic flow modeling and extended Kalman filtering, which are outlined in the paper. The reported investigations were conducted by use of eight-hour traffic measurement data collected from a freeway stretch of 4.1 km close to Munich, Germany. Some key issues are carefully investigated, including the tracking capability of the designed traffic state estimator, significance of the online model parameter estimation, sensitivity of the estimator to the initial values of the estimated model parameters as well as to the related noise standard deviation values, and the capability of the estimator to handle biased flow measurements. The achieved results are quite satisfactory.

Suggested Citation

  • Yibing Wang & Markos Papageorgiou & Albert Messmer, 2007. "Real-Time Freeway Traffic State Estimation Based on Extended Kalman Filter: A Case Study," Transportation Science, INFORMS, vol. 41(2), pages 167-181, May.
  • Handle: RePEc:inm:ortrsc:v:41:y:2007:i:2:p:167-181
    DOI: 10.1287/trsc.1070.0194
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1070.0194
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1070.0194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hilmi Berk Celikoglu & Mehmet Ali Silgu, 2016. "Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering," Transportation Science, INFORMS, vol. 50(3), pages 966-981, August.
    2. Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
    3. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    4. Nantes, Alfredo & Ngoduy, Dong & Miska, Marc & Chung, Edward, 2015. "Probabilistic travel time progression and its application to automatic vehicle identification data," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 131-145.
    5. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    6. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.
    7. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    8. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    9. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    10. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    11. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    12. Yi Cao & Xiaolei Hou & Nan Chen, 2022. "Short-Term Forecast of OD Passenger Flow Based on Ensemble Empirical Mode Decomposition," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    13. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    14. Wang, Yibing & Papageorgiou, Markos & Messmer, Albert, 2008. "Real-time freeway traffic state estimation based on extended Kalman filter: Adaptive capabilities and real data testing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1340-1358, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
    2. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    3. Pereira, Mike & Boyraz Baykas, Pinar & Kulcsár, Balázs & Lang, Annika, 2022. "Parameter and density estimation from real-world traffic data: A kinetic compartmental approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 210-239.
    4. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    5. Zhang, Jie & Song, Chunyue & Cao, Shan & Zhang, Chun, 2023. "FDST-GCN: A Fundamental Diagram based Spatiotemporal Graph Convolutional Network for expressway traffic forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    6. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.
    7. Čičić, Mladen & Johansson, Karl Henrik, 2022. "Front-tracking transition system model for traffic state reconstruction, model learning, and control with application to stop-and-go wave dissipation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 212-236.
    8. van Erp, Paul B.C. & Knoop, Victor L. & Hoogendoorn, Serge P., 2018. "Macroscopic traffic state estimation using relative flows from stationary and moving observers," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 281-299.
    9. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    10. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    11. Peng, Yanni & Xiang, Wanli, 2020. "Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    12. Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 0. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 0, pages 1-41.
    13. Han, Yu & Zhang, Mingyu & Guo, Yanyong & Zhang, Le, 2022. "A streaming-data-driven method for freeway traffic state estimation using probe vehicle trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    15. Pan, Yingjiu & Chen, Shuyan & Niu, Shifeng & Ma, Yongfeng & Tang, Kun, 2020. "Investigating the impacts of built environment on traffic states incorporating spatial heterogeneity," Journal of Transport Geography, Elsevier, vol. 83(C).
    16. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    17. Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2021. "Average density estimation for urban traffic networks: Application to the Grenoble network," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 21-43.
    18. Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 2021. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 48(4), pages 1767-1807, August.
    19. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    20. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:41:y:2007:i:2:p:167-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.