IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v42y2008i4p355-372.html
   My bibliography  Save this article

Explicit construction of entropy solutions for the Lighthill-Whitham-Richards traffic flow model with a piecewise quadratic flow-density relationship

Author

Listed:
  • Lu, Yadong
  • Wong, S.C.
  • Zhang, Mengping
  • Shu, Chi-Wang
  • Chen, Wenqin

Abstract

In this paper we explicitly construct the entropy solutions for the Lighthill-Whitham-Richards (LWR) traffic flow model with a flow-density relationship which is piecewise quadratic, continuous, concave, but not differentiable at the junction points where two quadratic polynomials meet, and with piecewise linear initial condition and piecewise constant boundary conditions. The proposed model is a generalization of the well-known piecewise linear flow-density relationship in the LWR model. As observed traffic flow data can be well fitted with such continuous piecewise quadratic functions, the explicitly constructed solutions provide a fast and accurate solution tool which may be used for predicting traffic or as a diagnosing tool to test the performance of numerical schemes. We implement these explicit entropy solutions for two representative traffic flow cases and also compare them with numerical solutions obtained by a high order weighted essentially non-oscillatory (WENO) scheme.

Suggested Citation

  • Lu, Yadong & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Chen, Wenqin, 2008. "Explicit construction of entropy solutions for the Lighthill-Whitham-Richards traffic flow model with a piecewise quadratic flow-density relationship," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 355-372, May.
  • Handle: RePEc:eee:transb:v:42:y:2008:i:4:p:355-372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(07)00078-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo, Hong K. & Szeto, W. Y., 2002. "A cell-based variational inequality formulation of the dynamic user optimal assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 421-443, June.
    2. Wong, G. C. K. & Wong, S. C., 2002. "A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 827-841, November.
    3. Leslie C. Edie, 1961. "Car-Following and Steady-State Theory for Noncongested Traffic," Operations Research, INFORMS, vol. 9(1), pages 66-76, February.
    4. Wong, S. C. & Wong, G. C. K., 2002. "An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 683-706, September.
    5. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    6. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    7. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: Solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 934-950, December.
    8. Michalopoulos, Panos G. & Beskos, Dimitrios E. & Lin, Jaw-Kuan, 1984. "Analysis of interrupted traffic flow by finite difference methods," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 409-421.
    9. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: basic theory and complex boundary conditions," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 187-196, February.
    10. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    11. Hong K. Lo, 2001. "A Cell-Based Traffic Control Formulation: Strategies and Benefits of Dynamic Timing Plans," Transportation Science, INFORMS, vol. 35(2), pages 148-164, May.
    12. Shane Velan & Michael Florian, 2002. "A Note on the Entropy Solutions of the Hydrodynamic Model of Traffic Flow," Transportation Science, INFORMS, vol. 36(4), pages 435-446, November.
    13. Ansorge, Rainer, 1990. "What does the entropy condition mean in traffic flow theory?," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 133-143, April.
    14. Daganzo, Carlos F., 1995. "A finite difference approximation of the kinematic wave model of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 261-276, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    2. Wang, Jiawen & Zou, Linzhi & Zhao, Jing & Wang, Xinwei, 2024. "Dynamic capacity drop propagation in incident-affected networks: Traffic state modeling with SIS-CTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
    4. Yadong Lu & S. C. Wong & Mengping Zhang & Chi-Wang Shu, 2009. "The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model with a Discontinuous Flow-Density Relationship," Transportation Science, INFORMS, vol. 43(4), pages 511-530, November.
    5. Zhang, Peng & Wong, S.C. & Dai, S.Q., 2009. "A conserved higher-order anisotropic traffic flow model: Description of equilibrium and non-equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 562-574, June.
    6. Tumash, Liudmila & Canudas-de-Wit, Carlos & Delle Monache, Maria Laura, 2022. "Multi-directional continuous traffic model for large-scale urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 374-402.
    7. Jin, Wen-Long, 2017. "A first-order behavioral model of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 438-457.
    8. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
    2. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    3. Yadong Lu & S. C. Wong & Mengping Zhang & Chi-Wang Shu, 2009. "The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model with a Discontinuous Flow-Density Relationship," Transportation Science, INFORMS, vol. 43(4), pages 511-530, November.
    4. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    5. Wong, S. C. & Wong, G. C. K., 2002. "An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 683-706, September.
    6. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    7. Tumash, Liudmila & Canudas-de-Wit, Carlos & Delle Monache, Maria Laura, 2022. "Multi-directional continuous traffic model for large-scale urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 374-402.
    8. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    9. Carolina Osorio & Gunnar Flötteröd, 2015. "Capturing Dependency Among Link Boundaries in a Stochastic Dynamic Network Loading Model," Transportation Science, INFORMS, vol. 49(2), pages 420-431, May.
    10. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    11. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    12. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    13. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    14. Blumberg, Michal & Bar-Gera, Hillel, 2009. "Consistent node arrival order in dynamic network loading models," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 285-300, March.
    15. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    16. Costeseque, Guillaume & Lebacque, Jean-Patrick, 2014. "A variational formulation for higher order macroscopic traffic flow models: Numerical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 112-133.
    17. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.
    18. Duret, Aurélien & Yuan, Yufei, 2017. "Traffic state estimation based on Eulerian and Lagrangian observations in a mesoscopic modeling framework," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 51-71.
    19. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    20. Carey, Malachy & Bar-Gera, Hillel & Watling, David & Balijepalli, Chandra, 2014. "Implementing first-in–first-out in the cell transmission model for networks," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 105-118.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:42:y:2008:i:4:p:355-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.