IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v114y2018icp281-299.html
   My bibliography  Save this article

Macroscopic traffic state estimation using relative flows from stationary and moving observers

Author

Listed:
  • van Erp, Paul B.C.
  • Knoop, Victor L.
  • Hoogendoorn, Serge P.

Abstract

This article presents a procedure to estimate the macroscopic traffic state in a pre-defined space-time mesh using relative flow data collected by stationary and moving observers. The procedure consist of two consecutive and independent processes: (1) estimate point observations of the cumulative vehicle number in space-time, i.e., N(x, t), based on relative flow data from the observers and (2) estimate flow and density in a pre-define space-time mesh based on the point observations of N. In this paper, the principles behind the first process are explained and a methodology (the Point-Observations N (PON) estimation methodology) is introduced for the second process. This methodology does not incorporate information in the form of a traffic flow model or historical data. To evaluate this performance and improve our understanding of the methodology, a microscopic simulation study is conducted. The estimation performance is effected by the homogeneity and stationarity of traffic in estimation area and in the sample area. In case of large changes in traffic conditions, e.g., from free-flow to congestion or stop-and-go waves, a better sampling resolution will improve localizing these changes in space and time and hence improve the estimation performance. In the simulation study, the proposed methodology is also compared with estimates based on loop-detector data. This indicates that the combination of the proposed methodology and data yields an alternative for existing combinations of methodology and data. Especially, in terms of density estimation the introduced methodology shows promising results.

Suggested Citation

  • van Erp, Paul B.C. & Knoop, Victor L. & Hoogendoorn, Serge P., 2018. "Macroscopic traffic state estimation using relative flows from stationary and moving observers," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 281-299.
  • Handle: RePEc:eee:transb:v:114:y:2018:i:c:p:281-299
    DOI: 10.1016/j.trb.2018.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518302285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    2. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    3. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    4. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    5. Yasuji Makigami & G. F. Newell & Richard Rothery, 1971. "Three-Dimensional Representation of Traffic Flow," Transportation Science, INFORMS, vol. 5(3), pages 302-313, August.
    6. Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
    7. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    8. Smaragdis, Emmanouil & Papageorgiou, Markos & Kosmatopoulos, Elias, 2004. "A flow-maximizing adaptive local ramp metering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 251-270, March.
    9. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
    2. Li, Li & Jabari, Saif Eddin, 2019. "Position weighted backpressure intersection control for urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 435-461.
    3. Blake Davis & Ang Ji & Bichen Liu & David Levinson, 2020. "Moving Array Traffic Probes," Working Papers 2022-01, University of Minnesota: Nexus Research Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.
    2. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    3. Zheng, Zuduo & Su, Dongcai, 2016. "Traffic state estimation through compressed sensing and Markov random field," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 525-554.
    4. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    5. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    6. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    7. Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
    8. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    9. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    10. Costeseque, Guillaume & Lebacque, Jean-Patrick, 2014. "A variational formulation for higher order macroscopic traffic flow models: Numerical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 112-133.
    11. Wong, S. C. & Wong, G. C. K., 2002. "An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 683-706, September.
    12. Tumash, Liudmila & Canudas-de-Wit, Carlos & Delle Monache, Maria Laura, 2022. "Multi-directional continuous traffic model for large-scale urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 374-402.
    13. Xingliang Liu & Jian Wang & Tangzhi Liu & Jin Xu, 2021. "Forecasting Spatiotemporal Boundary of Emergency-Event-Based Traffic Congestion in Expressway Network Considering Highway Node Acceptance Capacity," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    14. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    15. N. Nezamuddin & Stephen Boyles, 2015. "A Continuous DUE Algorithm Using the Link Transmission Model," Networks and Spatial Economics, Springer, vol. 15(3), pages 465-483, September.
    16. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    17. Duret, Aurélien & Yuan, Yufei, 2017. "Traffic state estimation based on Eulerian and Lagrangian observations in a mesoscopic modeling framework," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 51-71.
    18. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    19. Gu, Weihua & Gayah, Vikash V. & Cassidy, Michael J. & Saade, Nathalie, 2014. "On the impacts of bus stops near signalized intersections: Models of car and bus delays," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 123-140.
    20. Mariotte, Guilhem & Leclercq, Ludovic, 2019. "Flow exchanges in multi-reservoir systems with spillbacks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 327-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:114:y:2018:i:c:p:281-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.