IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v39y2005i2p141-167.html
   My bibliography  Save this article

Real-time freeway traffic state estimation based on extended Kalman filter: a general approach

Author

Listed:
  • Wang, Yibing
  • Papageorgiou, Markos

Abstract

A general approach to the real-time estimation of the complete traffic state in freeway stretches is developed based on the extended Kalman filter. First, a general stochastic macroscopic traffic flow model of freeway stretches is presented, while some simple formulae are proposed to model real-time traffic measurements. Second, the macroscopic traffic flow model along with the measurement model is organized in a compact state-space form, based on which a traffic state estimator is designed by use of the extended-Kalman-filtering method. While constructing the traffic state estimator, special attention is paid to the handling of the boundary conditions and unknown parameters of the macroscopic traffic flow model. A number of simulations are conducted to test the designed traffic state estimator under various traffic situations in a freeway stretch with on/off-ramps and a long inter-detector distance. Some key issues are carefully investigated, including tracking capability of the traffic state estimator, comparison of various estimation schemes, evaluation of different detector configurations, significance of the on-line model parameter estimation, sensitivity of the traffic state estimator to the initial values of the estimated model parameters and to the related standard deviation values, and dynamic tracking of time-varying model parameters. The achieved simulation results are very promising for the subsequent development and testing work that is briefly outlined.

Suggested Citation

  • Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
  • Handle: RePEc:eee:transb:v:39:y:2005:i:2:p:141-167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(04)00043-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. E. Nahi & A. N. Trivedi, 1973. "Recursive Estimation of Traffic Variables: Section Density and Average Speed," Transportation Science, INFORMS, vol. 7(3), pages 269-286, August.
    2. Denos C. Gazis & Charles H. Knapp, 1971. "On-Line Estimation of Traffic Densities from Time-Series of Flow and Speed Data," Transportation Science, INFORMS, vol. 5(3), pages 283-301, August.
    3. Michael W. Szeto & Denos C. Gazis, 1972. "Application of Kalman Filtering to the Surveillance and Control of Traffic Systems," Transportation Science, INFORMS, vol. 6(4), pages 419-439, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngoduy, D., 2008. "Applicable filtering framework for online multiclass freeway network estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 599-616.
    2. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    3. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    4. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    5. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.
    6. Coifman, Benjamin & Varaiya, Pravin, 2002. "Deployment and Evaluation of Real-Time Vehicle Reidentification from an Operations Perspective," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6tp5w2gt, Institute of Transportation Studies, UC Berkeley.
    7. Coifman, Benjamin, 2003. "Estimating density and lane inflow on a freeway segment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 689-701, October.
    8. Herrera, Juan C & Bayen, Alexandre M, 2007. "Traffic flow reconstruction using mobile sensors and loop detector data," University of California Transportation Center, Working Papers qt6v40f0bs, University of California Transportation Center.
    9. Sheu, Jiuh-Biing & Chou, Yi-Hwa & Shen, Liang-Jen, 2001. "A stochastic estimation approach to real-time prediction of incident effects on freeway traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 575-592, July.
    10. Bojovic, Nebojsa J., 2002. "A general system theory approach to rail freight car fleet sizing," European Journal of Operational Research, Elsevier, vol. 136(1), pages 136-172, January.
    11. Guardiola, I.G. & Leon, T. & Mallor, F., 2014. "A functional approach to monitor and recognize patterns of daily traffic profiles," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 119-136.
    12. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    13. Gazis, Denos & Liu, Chiu, 2003. "Kalman filtering estimation of traffic counts for two network links in tandem," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 737-745, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:39:y:2005:i:2:p:141-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.