Classifying the traffic state of urban expressways: A machine-learning approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tra.2018.10.035
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bai, Lu & Liu, Pan & Chan, Ching-Yao & Li, Zhibin, 2017. "Estimating level of service of mid-block bicycle lanes considering mixed traffic flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 203-217.
- Hilmi Berk Celikoglu & Mehmet Ali Silgu, 2016. "Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering," Transportation Science, INFORMS, vol. 50(3), pages 966-981, August.
- Kadali, B Raghuram & Vedagiri, P., 2015. "Evaluation of pedestrian crosswalk level of service (LOS) in perspective of type of land-use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 113-124.
- Daniel (Jian) Sun & Lily Elefteriadou, 2014. "A Driver Behavior-Based Lane-Changing Model for Urban Arterial Streets," Transportation Science, INFORMS, vol. 48(2), pages 184-205, May.
- Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
- Jie Cao & Zhiyi Fang & Guannan Qu & Hongyu Sun & Dan Zhang, 2017. "An accurate traffic classification model based on support vector machines," International Journal of Network Management, John Wiley & Sons, vol. 27(1), January.
- Lozano, Angélica & Manfredi, Giuseppe & Nieddu, Luciano, 2009. "An algorithm for the recognition of levels of congestion in road traffic problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(6), pages 1926-1934.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Qiang Shang & Yang Yu & Tian Xie, 2022. "A Hybrid Method for Traffic State Classification Using K-Medoids Clustering and Self-Tuning Spectral Clustering," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
- Jinrui Zang & Pengpeng Jiao & Sining Liu & Xi Zhang & Guohua Song & Lei Yu, 2023. "Identifying Traffic Congestion Patterns of Urban Road Network Based on Traffic Performance Index," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
- Yu, Yi & Cui, Yanlei & Zeng, Jiaqi & He, Chunguang & Wang, Dianhai, 2022. "Identifying traffic clusters in urban networks based on graph theory using license plate recognition data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
- Zhaoqi Zang & Xiangdong Xu & Anthony Chen & Chao Yang, 2022. "Modeling the α-max capacity of transportation networks: a single-level mathematical programming formulation," Transportation, Springer, vol. 49(4), pages 1211-1243, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
- Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
- Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
- Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
- Gao, Yang & Levinson, David, 2024. "A multi-stage spatial queueing model with logistic arrivals and departures consistent with the microscopic fundamental diagram and hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
- Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
- Bi, Hui & Ye, Zhirui & Hu, Liyang & Zhu, He, 2021. "Why they don't choose bus service? Understanding special online car-hailing behavior near bus stops," Transport Policy, Elsevier, vol. 114(C), pages 280-297.
- Rahul, T.M. & Manoj, M., 2020. "Categorization of pedestrian level of service perceptions and accounting its response heterogeneity and latent correlation on travel decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 40-55.
- Čičić, Mladen & Johansson, Karl Henrik, 2022. "Front-tracking transition system model for traffic state reconstruction, model learning, and control with application to stop-and-go wave dissipation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 212-236.
- Sharifi, Mohammad Sadra & Christensen, Keith & Chen, Anthony & Song, Ziqi, 2019. "Exploring effects of environment density on heterogeneous populations’ level of service perceptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 115-127.
- Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
- Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 0. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 0, pages 1-41.
- Haris Murwadi & Bart Dewancker, 2017. "Study of Quassessment Model for Campus Pedestrian Ways, Case Study: Sidewalk of the University of Lampung," Sustainability, MDPI, vol. 9(12), pages 1-16, December.
- Changxi Ma & Jibiao Zhou & Dong Yang & Yuanyuan Fan, 2020. "Research on the Relationship between the Individual Characteristics of Electric Bike Riders and Illegal Speeding Behavior: A Questionnaire-Based Study," Sustainability, MDPI, vol. 12(3), pages 1-12, January.
- Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
- Fan, Zhang & Yanjie, Ji & Huitao, Lv & Yuqian, Zhang & Blythe, Phil & Jialiang, Fan, 2022. "Travel satisfaction of delivery electric two-wheeler riders: Evidence from Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 253-266.
- Pan, Yingjiu & Chen, Shuyan & Niu, Shifeng & Ma, Yongfeng & Tang, Kun, 2020. "Investigating the impacts of built environment on traffic states incorporating spatial heterogeneity," Journal of Transport Geography, Elsevier, vol. 83(C).
- Zhanji Zheng & Qiaojun Xiang & Xin Gu & Yongfeng Ma & Kangkang Zheng, 2020. "The Influence of Individual Differences on Diverging Behavior at the Weaving Sections of an Urban Expressway," IJERPH, MDPI, vol. 18(1), pages 1-17, December.
- Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2021. "Average density estimation for urban traffic networks: Application to the Grenoble network," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 21-43.
More about this item
Keywords
Urban expressways; Traffic state; Machine-learning; Fuzzy c-means (FCM) clustering; Classification performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:137:y:2020:i:c:p:411-428. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.