IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v49y2015i2p420-431.html
   My bibliography  Save this article

Capturing Dependency Among Link Boundaries in a Stochastic Dynamic Network Loading Model

Author

Listed:
  • Carolina Osorio

    (Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Gunnar Flötteröd

    (Department of Transport Science, KTH Royal Institute of Technology, 11428 Stockholm, Sweden)

Abstract

This work adds realistic dependency structure to a previously developed analytical stochastic network loading model. The model is a stochastic formulation of the link-transmission model, which is an operational instance of Newell’s simplified theory of kinematic waves. Stochasticity is captured in the source terms, the flows, and, consequently, in the cumulative flows. The previous approach captured dependency between the upstream and downstream boundary conditions within a link (i.e., the respective cumulative flows) only in terms of time-dependent expectations without capturing higher-order dependency. The model proposed in this paper adds an approximation of full distributional stochastic dependency to the link model. The model is validated versus stochastic microsimulation in both stationary and transient regimes. The experiments reveal that the proposed model provides a very accurate approximation of the stochastic dependency between the link’s upstream and downstream boundary conditions. The model also yields detailed and accurate link state probability distributions.

Suggested Citation

  • Carolina Osorio & Gunnar Flötteröd, 2015. "Capturing Dependency Among Link Boundaries in a Stochastic Dynamic Network Loading Model," Transportation Science, INFORMS, vol. 49(2), pages 420-431, May.
  • Handle: RePEc:inm:ortrsc:v:49:y:2015:i:2:p:420-431
    DOI: 10.1287/trsc.2013.0504
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2013.0504
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2013.0504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    2. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
    3. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    4. Carolina Osorio & Michel Bierlaire, 2013. "A Simulation-Based Optimization Framework for Urban Transportation Problems," Operations Research, INFORMS, vol. 61(6), pages 1333-1345, December.
    5. Boel, René & Mihaylova, Lyudmila, 2006. "A compositional stochastic model for real time freeway traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 319-334, May.
    6. Corthout, Ruben & Flötteröd, Gunnar & Viti, Francesco & Tampère, Chris M.J., 2012. "Non-unique flows in macroscopic first-order intersection models," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 343-359.
    7. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    8. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    9. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    10. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: basic theory and complex boundary conditions," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 187-196, February.
    11. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    12. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    13. Ansorge, Rainer, 1990. "What does the entropy condition mean in traffic flow theory?," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 133-143, April.
    14. Daganzo, Carlos F., 1995. "A finite difference approximation of the kinematic wave model of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 261-276, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    2. Boon, Marko A.A. & van Leeuwaarden, Johan S.H., 2018. "Networks of fixed-cycle intersections," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 254-271.
    3. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    4. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    5. António Pacheco & Maria Lurdes Simões Simões & Paula Milheiro-Oliveira, 2017. "Queues with Server Vacations as a Model for Pretimed Signalized Urban Traffic," Transportation Science, INFORMS, vol. 51(3), pages 841-851, August.
    6. Rui Ma & Xuegang (Jeff) Ban & Jong-Shi Pang, 2018. "A Link-Based Differential Complementarity System Formulation for Continuous-Time Dynamic User Equilibria with Queue Spillbacks," Transportation Science, INFORMS, vol. 52(3), pages 564-592, June.
    7. Lu, Jing & Osorio, Carolina, 2024. "Link transmission model: A formulation with enhanced compute time for large-scale network optimization," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    8. Wada, Kentaro & Usui, Kento & Takigawa, Tsubasa & Kuwahara, Masao, 2018. "An optimization modeling of coordinated traffic signal control based on the variational theory and its stochastic extension," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 907-925.
    9. Yang, Xia & Ban, Xuegang (Jeff) & Mitchell, John, 2018. "Modeling multimodal transportation network emergency evacuation considering evacuees’ cooperative behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 380-397.
    10. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    11. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    12. Linsen Chong & Carolina Osorio, 2018. "A Simulation-Based Optimization Algorithm for Dynamic Large-Scale Urban Transportation Problems," Transportation Science, INFORMS, vol. 52(3), pages 637-656, June.
    13. Carolina Osorio & Jana Yamani, 2017. "Analytical and Scalable Analysis of Transient Tandem Markovian Finite Capacity Queueing Networks," Transportation Science, INFORMS, vol. 51(3), pages 823-840, August.
    14. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    2. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    3. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    4. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    5. Lu, Jing & Osorio, Carolina, 2024. "Link transmission model: A formulation with enhanced compute time for large-scale network optimization," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    6. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    7. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    8. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    9. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    10. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    11. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    12. Lu, Yadong & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Chen, Wenqin, 2008. "Explicit construction of entropy solutions for the Lighthill-Whitham-Richards traffic flow model with a piecewise quadratic flow-density relationship," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 355-372, May.
    13. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    14. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2020. "Static traffic assignment with residual queues and spillback," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 303-319.
    15. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    16. Wang, Guanfeng & Jia, Hongfei & Feng, Tao & Tian, Jingjing & Wu, Ruiyi & Gao, Heyao & Liu, Chao, 2024. "Modelling the dual dynamic traffic flow evolution with information perception differences between human-driven vehicles and connected autonomous vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    17. Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
    18. Jabari, Saif Eddin, 2016. "Node modeling for congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 229-249.
    19. Wong, S. C. & Wong, G. C. K., 2002. "An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 683-706, September.
    20. Jing Lu & Carolina Osorio, 2018. "A Probabilistic Traffic-Theoretic Network Loading Model Suitable for Large-Scale Network Analysis," Service Science, INFORMS, vol. 52(6), pages 1509-1530, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:49:y:2015:i:2:p:420-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.