IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i4p1424-1432.html
   My bibliography  Save this article

Sensitivity analysis for matched pair analysis of binary data: From worst case to average case analysis

Author

Listed:
  • Raiden Hasegawa
  • Dylan Small

Abstract

In matched observational studies where treatment assignment is not randomized, sensitivity analysis helps investigators determine how sensitive their estimated treatment effect is to some unmeasured confounder. The standard approach calibrates the sensitivity analysis according to the worst case bias in a pair. This approach will result in a conservative sensitivity analysis if the worst case bias does not hold in every pair. In this paper, we show that for binary data, the standard approach can be calibrated in terms of the average bias in a pair rather than worst case bias. When the worst case bias and average bias differ, the average bias interpretation results in a less conservative sensitivity analysis and more power. In many studies, the average case calibration may also carry a more natural interpretation than the worst case calibration and may also allow researchers to incorporate additional data to establish an empirical basis with which to calibrate a sensitivity analysis. We illustrate this with a study of the effects of cellphone use on the incidence of automobile accidents. Finally, we extend the average case calibration to the sensitivity analysis of confidence intervals for attributable effects.

Suggested Citation

  • Raiden Hasegawa & Dylan Small, 2017. "Sensitivity analysis for matched pair analysis of binary data: From worst case to average case analysis," Biometrics, The International Biometric Society, vol. 73(4), pages 1424-1432, December.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1424-1432
    DOI: 10.1111/biom.12688
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12688
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph L. Gastwirth & Abba M. Krieger & Paul R. Rosenbaum, 2000. "Asymptotic separability in sensitivity analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 545-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Kallus & Angela Zhou, 2021. "Minimax-Optimal Policy Learning Under Unobserved Confounding," Management Science, INFORMS, vol. 67(5), pages 2870-2890, May.
    2. Giovanni Nattino & Bo Lu, 2018. "Model assisted sensitivity analyses for hidden bias with binary outcomes," Biometrics, The International Biometric Society, vol. 74(4), pages 1141-1149, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesse Y. Hsu & Dylan S. Small, 2013. "Calibrating Sensitivity Analyses to Observed Covariates in Observational Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 803-811, December.
    2. Kwonsang Lee & Dylan S. Small & Paul R. Rosenbaum, 2018. "A powerful approach to the study of moderate effect modification in observational studies," Biometrics, The International Biometric Society, vol. 74(4), pages 1161-1170, December.
    3. Peter Z. Schochet & John Burghardt, 2007. "Using Propensity Scoring to Estimate Program-Related Subgroup Impacts in Experimental Program Evaluations," Evaluation Review, , vol. 31(2), pages 95-120, April.
    4. Paul R. Rosenbaum, 2007. "Sensitivity Analysis for m-Estimates, Tests, and Confidence Intervals in Matched Observational Studies," Biometrics, The International Biometric Society, vol. 63(2), pages 456-464, June.
    5. Siyu Heng & Hyunseung Kang & Dylan S. Small & Colin B. Fogarty, 2021. "Increasing power for observational studies of aberrant response: An adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 482-504, July.
    6. Colin B. Fogarty & Pixu Shi & Mark E. Mikkelsen & Dylan S. Small, 2017. "Randomization Inference and Sensitivity Analysis for Composite Null Hypotheses With Binary Outcomes in Matched Observational Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 321-331, January.
    7. Colin B. Fogarty, 2023. "Testing weak nulls in matched observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2196-2207, September.
    8. Paul R. Rosenbaum, 2007. "Confidence Intervals for Uncommon but Dramatic Responses to Treatment," Biometrics, The International Biometric Society, vol. 63(4), pages 1164-1171, December.
    9. Giovanni Nattino & Bo Lu, 2018. "Model assisted sensitivity analyses for hidden bias with binary outcomes," Biometrics, The International Biometric Society, vol. 74(4), pages 1141-1149, December.
    10. Paul R. Rosenbaum, 2013. "Impact of Multiple Matched Controls on Design Sensitivity in Observational Studies," Biometrics, The International Biometric Society, vol. 69(1), pages 118-127, March.
    11. Bo Zhang & Dylan S. Small, 2020. "A calibrated sensitivity analysis for matched observational studies with application to the effect of second‐hand smoke exposure on blood lead levels in children," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1285-1305, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1424-1432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.