IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v151y2009i1p70-81.html
   My bibliography  Save this article

Minimax regret treatment choice with finite samples

Author

Listed:
  • Stoye, Jörg

Abstract

This paper applies the minimax regret criterion to choice between two treatments conditional on observation of a finite sample. The analysis is based on exact small sample regret and does not use asymptotic approximations or finite-sample bounds. Core results are: (i) Minimax regret treatment rules are well approximated by empirical success rules in many cases, but differ from them significantly-both in terms of how the rules look and in terms of maximal regret incurred-for small sample sizes and certain sample designs. (ii) Absent prior cross-covariate restrictions on treatment outcomes, they prescribe inference that is completely separate across covariates, leading to no-data rules as the support of a covariate grows. I conclude by offering an assessment of these results.

Suggested Citation

  • Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
  • Handle: RePEc:eee:econom:v:151:y:2009:i:1:p:70-81
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00072-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stoye, Jörg, 2011. "Axioms for minimax regret choice correspondences," Journal of Economic Theory, Elsevier, vol. 146(6), pages 2226-2251.
    2. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    3. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    4. Manski, Charles F., 2000. "Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice," Journal of Econometrics, Elsevier, vol. 95(2), pages 415-442, April.
    5. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    6. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
    7. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    8. Stoye, Jörg, 2007. "Minimax Regret Treatment Choice With Incomplete Data And Many Treatments," Econometric Theory, Cambridge University Press, vol. 23(1), pages 190-199, February.
    9. Hayashi, Takashi, 2008. "Regret aversion and opportunity dependence," Journal of Economic Theory, Elsevier, vol. 139(1), pages 242-268, March.
    10. William A. Brock, 2006. "Profiling Problems With Partially Identified Structure," Economic Journal, Royal Economic Society, vol. 116(515), pages 427-440, November.
    11. Charles F. Manski, 2006. "Search Profiling With Partial Knowledge of Deterrence," Economic Journal, Royal Economic Society, vol. 116(515), pages 385-401, November.
    12. Jörg Stoye, 2011. "Statistical decisions under ambiguity," Theory and Decision, Springer, vol. 70(2), pages 129-148, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    2. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    3. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," Papers 2011.03153, arXiv.org, revised Dec 2020.
    4. Stoye, Jörg, 2011. "Axioms for minimax regret choice correspondences," Journal of Economic Theory, Elsevier, vol. 146(6), pages 2226-2251.
    5. Iverson, Terrence, 2013. "Minimax regret discounting," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 598-608.
    6. Jörg Stoye, 2011. "Statistical decisions under ambiguity," Theory and Decision, Springer, vol. 70(2), pages 129-148, February.
    7. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    8. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2022. "Optimal Decision Rules when Payoffs are Partially Identified," Papers 2204.11748, arXiv.org, revised May 2023.
    9. Brock, William A. & Durlauf, Steven N. & Nason, James M. & Rondina, Giacomo, 2007. "Simple versus optimal rules as guides to policy," Journal of Monetary Economics, Elsevier, vol. 54(5), pages 1372-1396, July.
    10. Iverson, Terrence, 2012. "Communicating Trade-offs amid Controversial Science: Decision Support for Climate Policy," Ecological Economics, Elsevier, vol. 77(C), pages 74-90.
    11. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    12. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    13. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Dirk Bergemann & Karl Schlag, 2012. "Robust Monopoly Pricing," World Scientific Book Chapters, in: Robust Mechanism Design The Role of Private Information and Higher Order Beliefs, chapter 13, pages 417-441, World Scientific Publishing Co. Pte. Ltd..
    15. Keisuke Hirano & Jack R. Porter, 2016. "Panel Asymptotics and Statistical Decision Theory," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 33-49, March.
    16. Stefanie Behncke & Markus Frölich & Michael Lechner, 2009. "Targeting Labour Market Programmes - Results from a Randomized Experiment," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 145(III), pages 221-268, September.
    17. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
    18. Joseph Halpern & Samantha Leung, 2015. "Weighted sets of probabilities and minimax weighted expected regret: a new approach for representing uncertainty and making decisions," Theory and Decision, Springer, vol. 79(3), pages 415-450, November.
    19. Daido Kido, 2023. "Locally Asymptotically Minimax Statistical Treatment Rules Under Partial Identification," Papers 2311.08958, arXiv.org.
    20. Takashi Hayashi, 2008. "Context dependence and consistency in dynamic choice under uncertainty: the case of anticipated regret," KIER Working Papers 659, Kyoto University, Institute of Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:151:y:2009:i:1:p:70-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.