IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v42y2024i3p998-1009.html
   My bibliography  Save this article

Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions

Author

Listed:
  • Sung Jae Jun
  • Sokbae Lee

Abstract

We study causal inference under case-control and case-population sampling. Specifically, we focus on the binary-outcome and binary-treatment case, where the parameters of interest are causal relative and attributable risks defined via the potential outcome framework. It is shown that strong ignorability is not always as powerful as it is under random sampling and that certain monotonicity assumptions yield comparable results in terms of sharp identified intervals. Specifically, the usual odds ratio is shown to be a sharp identified upper bound on causal relative risk under the monotone treatment response and monotone treatment selection assumptions. We offer algorithms for inference on the causal parameters that are aggregated over the true population distribution of the covariates. We show the usefulness of our approach by studying three empirical examples: the benefit of attending private school for entering a prestigious university in Pakistan; the relationship between staying in school and getting involved with drug-trafficking gangs in Brazil; and the link between physicians’ hours and size of the group practice in the United States.

Suggested Citation

  • Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
  • Handle: RePEc:taf:jnlbes:v:42:y:2024:i:3:p:998-1009
    DOI: 10.1080/07350015.2023.2277164
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2023.2277164
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2023.2277164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Imbens, Guido W, 1992. "An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling," Econometrica, Econometric Society, vol. 60(5), pages 1187-1214, September.
    2. James J. Heckman & Petra E. Todd, 2009. "A note on adapting propensity score matching and selection models to choice based samples," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 230-234, January.
    3. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    4. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    5. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    6. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    7. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    8. Sung Jae Jun & Sokbae Lee, 2023. "Identifying the Effect of Persuasion," Journal of Political Economy, University of Chicago Press, vol. 131(8), pages 2032-2058.
    9. Cosslett, Stephen R, 1981. "Maximum Likelihood Estimator for Choice-Based Samples," Econometrica, Econometric Society, vol. 49(5), pages 1289-1316, September.
    10. Janet Currie & Matthew Neidell, 2005. "Air Pollution and Infant Health: What Can We Learn from California's Recent Experience?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(3), pages 1003-1030.
    11. Machado, Cecilia & Shaikh, Azeem M. & Vytlacil, Edward J., 2019. "Instrumental variables and the sign of the average treatment effect," Journal of Econometrics, Elsevier, vol. 212(2), pages 522-555.
    12. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    13. Yu Xie & Charles F. Manski, 1989. "The Logit Model and Response-Based Samples," Sociological Methods & Research, , vol. 17(3), pages 283-302, February.
    14. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    15. Carvalho, Leandro S. & Soares, Rodrigo R., 2016. "Living on the edge: Youth entry, career and exit in drug-selling gangs," Journal of Economic Behavior & Organization, Elsevier, vol. 121(C), pages 77-98.
    16. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    17. Eric J. Tchetgen Tchetgen & James M. Robins & Andrea Rotnitzky, 2010. "On doubly robust estimation in a semiparametric odds ratio model," Biometrika, Biometrika Trust, vol. 97(1), pages 171-180.
    18. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    19. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    20. Lancaster, Tony & Imbens, Guido, 1996. "Case-control studies with contaminated controls," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 145-160.
    21. Daniel Ackerberg & Xiaohong Chen & Jinyong Hahn, 2012. "A Practical Asymptotic Variance Estimator for Two-Step Semiparametric Estimators," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 481-498, May.
    22. Imbens, Guido W. & Lancaster, Tony, 1996. "Efficient estimation and stratified sampling," Journal of Econometrics, Elsevier, vol. 74(2), pages 289-318, October.
    23. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    24. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    25. Brent Kreider & John V. Pepper & Craig Gundersen & Dean Jolliffe, 2012. "Identifying the Effects of SNAP (Food Stamps) on Child Health Outcomes When Participation Is Endogenous and Misreported," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 958-975, September.
    26. Daniel Ackerberg & Xiaohong Chen & Jinyong Hahn & Zhipeng Liao, 2014. "Asymptotic Efficiency of Semiparametric Two-step GMM," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 919-943.
    27. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    28. Kani Chen, 2001. "Parametric models for response‐biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 775-789.
    29. Hua Yun Chen, 2007. "A Semiparametric Odds Ratio Model for Measuring Association," Biometrics, The International Biometric Society, vol. 63(2), pages 413-421, June.
    30. Jay Bhattacharya & Azeem M. Shaikh & Edward Vytlacil, 2008. "Treatment Effect Bounds under Monotonicity Assumptions: An Application to Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 351-356, May.
    31. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    32. E. H. Kennedy & A. Sjölander & D. S. Small, 2015. "Semiparametric causal inference in matched cohort studies," Biometrika, Biometrika Trust, vol. 102(3), pages 739-746.
    33. Bhattacharya, Jay & Shaikh, Azeem M. & Vytlacil, Edward, 2012. "Treatment effect bounds: An application to Swan–Ganz catheterization," Journal of Econometrics, Elsevier, vol. 168(2), pages 223-243.
    34. Ian Domowitz & Robert L. Sartain, 1999. "Determinants of the Consumer Bankruptcy Decision," Journal of Finance, American Finance Association, vol. 54(1), pages 403-420, February.
    35. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    36. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    37. Jing Zhou & Amy H. Herring & Anirban Bhattacharya & Andrew F. Olshan & David B. Dunson, 2016. "Nonparametric Bayes modeling for case control studies with many predictors," Biometrics, The International Biometric Society, vol. 72(1), pages 184-192, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung Jae Jun & Sokbae Lee, 2022. "Average Adjusted Association: Efficient Estimation with High Dimensional Confounders," Papers 2205.14048, arXiv.org, revised Apr 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sung Jae Jun & Sokbae (Simon) Lee, 2020. "Causal inference in case-control studies," CeMMAP working papers CWP19/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    3. Sung Jae Jun & Sokbae Lee, 2022. "Average Adjusted Association: Efficient Estimation with High Dimensional Confounders," Papers 2205.14048, arXiv.org, revised Apr 2023.
    4. Amanda Coston & Edward H. Kennedy, 2022. "The role of the geometric mean in case-control studies," Papers 2207.09016, arXiv.org.
    5. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    6. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    7. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    8. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    9. Kyungchul Song, 2009. "Efficient Estimation of Average Treatment Effects under Treatment-Based Sampling," PIER Working Paper Archive 09-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Sung Jae Jun & Sokbae Lee, 2023. "Identifying the Effect of Persuasion," Journal of Political Economy, University of Chicago Press, vol. 131(8), pages 2032-2058.
    11. Nathan Kallus, 2022. "What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment," Papers 2205.10327, arXiv.org, revised Nov 2022.
    12. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    13. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    14. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    16. Wenlong Ji & Lihua Lei & Asher Spector, 2023. "Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects," Papers 2310.08115, arXiv.org, revised Nov 2024.
    17. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    18. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    19. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    20. Yiwei Sun, 2023. "Extrapolating Away from the Cutoff in Regression Discontinuity Designs," Papers 2311.18136, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:42:y:2024:i:3:p:998-1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.