IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v26y2015i1p19-39.html
   My bibliography  Save this article

Predictive Analytics for Readmission of Patients with Congestive Heart Failure

Author

Listed:
  • Indranil Bardhan

    (Naveen Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080)

  • Jeong-ha (Cath) Oh

    (J. Mack Robinson College of Business, Georgia State University, Atlanta, Georgia 30302)

  • Zhiqiang (Eric) Zheng

    (Naveen Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080)

  • Kirk Kirksey

    (University of Texas Southwestern Medical Center, Dallas, Texas 75390)

Abstract

Mitigating preventable readmissions, where patients are readmitted for the same primary diagnosis within 30 days, poses a significant challenge to the delivery of high-quality healthcare. Toward this end, we develop a novel, predictive analytics model, termed as the beta geometric Erlang-2 (BG/EG) hurdle model, which predicts the propensity, frequency, and timing of readmissions of patients diagnosed with congestive heart failure (CHF). This unified model enables us to answer three key questions related to the use of predictive analytics methods for patient readmissions: whether a readmission will occur, how often readmissions will occur, and when a readmission will occur. We test our model using a unique data set that tracks patient demographic, clinical, and administrative data across 67 hospitals in North Texas over a four-year period. We show that our model provides superior predictive performance compared to extant models such as the logit, BG/NBD hurdle, and EG hurdle models. Our model also allows us to study the association between hospital usage of health information technologies (IT) and readmission risk. We find that health IT usage, patient demographics, visit characteristics, payer type, and hospital characteristics, are significantly associated with patient readmission risk. We also observe that implementation of cardiology information systems is associated with a reduction in the propensity and frequency of future readmissions, whereas administrative IT systems are correlated with a lower frequency of future readmissions. Our results indicate that patient profiles derived from our model can serve as building blocks for a predictive analytics system to identify CHF patients with high readmission risk.

Suggested Citation

  • Indranil Bardhan & Jeong-ha (Cath) Oh & Zhiqiang (Eric) Zheng & Kirk Kirksey, 2015. "Predictive Analytics for Readmission of Patients with Congestive Heart Failure," Information Systems Research, INFORMS, vol. 26(1), pages 19-39, March.
  • Handle: RePEc:inm:orisre:v:26:y:2015:i:1:p:19-39
    DOI: 10.1287/isre.2014.0553
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/isre.2014.0553
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2014.0553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nirup M. Menon & Byungtae Lee & Leslie Eldenburg, 2000. "Productivity of Information Systems in the Healthcare Industry," Information Systems Research, INFORMS, vol. 11(1), pages 83-92, March.
    2. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    3. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    4. Amalia R. Miller & Catherine E. Tucker, 2011. "Can Health Care Information Technology Save Babies?," Journal of Political Economy, University of Chicago Press, vol. 119(2), pages 289-324.
    5. Sarv Devaraj & Rajiv Kohli, 2003. "Performance Impacts of Information Technology: Is Actual Usage the Missing Link?," Management Science, INFORMS, vol. 49(3), pages 273-289, March.
    6. Douglas J. Morrice & Indranil R. Bardhan, 1995. "A Weighted Least Squares Approach to Computer Simulation Factor Screening," Operations Research, INFORMS, vol. 43(5), pages 792-806, October.
    7. Rainer Winkelmann, 2004. "Health care reform and the number of doctor visits-an econometric analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(4), pages 455-472.
    8. Abel P. Jeuland & Frank M. Bass & Gordon P. Wright, 1980. "A Multibrand Stochastic Model Compounding Heterogeneous Erlang Timing and Multinomial Choice Processes," Operations Research, INFORMS, vol. 28(2), pages 255-277, April.
    9. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    10. Ritu Agarwal & Guodong (Gordon) Gao & Catherine DesRoches & Ashish K. Jha, 2010. "Research Commentary ---The Digital Transformation of Healthcare: Current Status and the Road Ahead," Information Systems Research, INFORMS, vol. 21(4), pages 796-809, December.
    11. Ravi Aron & Shantanu Dutta & Ramkumar Janakiraman & Praveen A. Pathak, 2011. "The Impact of Automation of Systems on Medical Errors: Evidence from Field Research," Information Systems Research, INFORMS, vol. 22(3), pages 429-446, September.
    12. Seetharaman, P B & Chintagunta, Pradeep K, 2003. "The Proportional Hazard Model for Purchase Timing: A Comparison of Alternative Specifications," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 368-382, July.
    13. Deb, Partha & Trivedi, Pravin K., 2002. "The structure of demand for health care: latent class versus two-part models," Journal of Health Economics, Elsevier, vol. 21(4), pages 601-625, July.
    14. Donald G. Morrison & David C. Schmittlein, 1981. "Predicting Future Random Events Based on Past Performance," Management Science, INFORMS, vol. 27(9), pages 1006-1023, September.
    15. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    16. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    17. Peter S. Fader & Bruce G. S. Hardie & Chun-Yao Huang, 2004. "A Dynamic Changepoint Model for New Product Sales Forecasting," Marketing Science, INFORMS, vol. 23(1), pages 50-65, October.
    18. Winkelmann, Rainer, 2006. "Reforming health care: Evidence from quantile regressions for counts," Journal of Health Economics, Elsevier, vol. 25(1), pages 131-145, January.
    19. Corey M. Angst & Ritu Agarwal & V. Sambamurthy & Ken Kelley, 2010. "Social Contagion and Information Technology Diffusion: The Adoption of Electronic Medical Records in U.S. Hospitals," Management Science, INFORMS, vol. 56(8), pages 1219-1241, August.
    20. Heckman, James J, 1991. "Identifying the Hand of the Past: Distinguishing State Dependence from Heterogeneity," American Economic Review, American Economic Association, vol. 81(2), pages 75-79, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Abbasi & David Dobolyi & Anthony Vance & Fatemeh Mariam Zahedi, 2021. "The Phishing Funnel Model: A Design Artifact to Predict User Susceptibility to Phishing Websites," Information Systems Research, INFORMS, vol. 32(2), pages 410-436, June.
    2. Chenzhang Bao & Indranil R. Bardhan, 2022. "Performance of Accountable Care Organizations: Health Information Technology and Quality–Efficiency Trade-Offs," Information Systems Research, INFORMS, vol. 33(2), pages 697-717, June.
    3. Ruba Aljafari & Franck Soh & Pankaj Setia & Ritu Agarwal, 2024. "The local environment matters: Evidence from digital healthcare services for patient engagement," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1343-1365, October.
    4. Diwas KC & TI Tongil Kim & Jiayi Liu, 2022. "Electronic prescription monitoring and the opioid epidemic," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4057-4074, November.
    5. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    6. Abhay Nath Mishra & Youyou Tao & Mark Keil & Jeong-ha (Cath) Oh, 2022. "Functional IT Complementarity and Hospital Performance in the United States: A Longitudinal Investigation," Information Systems Research, INFORMS, vol. 33(1), pages 55-75, March.
    7. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    8. Singha, Sumanta & Arha, Himanshu & Kar, Arpan Kumar, 2023. "Healthcare analytics: A techno-functional perspective," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    9. Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
    10. Anindya Ghose & Xitong Guo & Beibei Li & Yuanyuan Dang, 2021. "Empowering Patients Using Smart Mobile Health Platforms: Evidence From A Randomized Field Experiment," Papers 2102.05506, arXiv.org, revised Feb 2021.
    11. Wang, Yichuan & Hajli, Nick, 2017. "Exploring the path to big data analytics success in healthcare," Journal of Business Research, Elsevier, vol. 70(C), pages 287-299.
    12. Quang “Neo” Bui & Emi Moriuchi, 2021. "Economic and Social Factors That Predict Readmission for Mental Health and Drug Abuse Patients," Sustainability, MDPI, vol. 13(2), pages 1-11, January.
    13. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    14. Wolfgang Ketter & Karsten Schroer & Konstantina Valogianni, 2023. "Information Systems Research for Smart Sustainable Mobility: A Framework and Call for Action," Information Systems Research, INFORMS, vol. 34(3), pages 1045-1065, September.
    15. Xinxue (Shawn) Qu & Aslan Lotfi & Dipak C. Jain & Zhengrui Jiang, 2022. "Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2067-2083, May.
    16. Ramkumar Janakiraman & Eunho Park & Emre M. Demirezen & Subodha Kumar, 2023. "The Effects of Health Information Exchange Access on Healthcare Quality and Efficiency: An Empirical Investigation," Management Science, INFORMS, vol. 69(2), pages 791-811, February.
    17. Shuo Yu & Yidong Chai & Sagar Samtani & Hongyan Liu & Hsinchun Chen, 2024. "Motion Sensor–Based Fall Prevention for Senior Care: A Hidden Markov Model with Generative Adversarial Network Approach," Information Systems Research, INFORMS, vol. 35(1), pages 1-15, March.
    18. Ahmed Abbasi & Jingjing Li & Donald Adjeroh & Marie Abate & Wanhong Zheng, 2019. "Don’t Mention It? Analyzing User-Generated Content Signals for Early Adverse Event Warnings," Information Systems Research, INFORMS, vol. 30(3), pages 1007-1028, September.
    19. Galetsi, P. & Katsaliaki, K. & Kumar, S., 2019. "Values, challenges and future directions of big data analytics in healthcare: A systematic review," Social Science & Medicine, Elsevier, vol. 241(C).
    20. Danish H. Saifee & Zhiqiang (Eric) Zheng & Indranil R. Bardhan & Atanu Lahiri, 2020. "Are Online Reviews of Physicians Reliable Indicators of Clinical Outcomes? A Focus on Chronic Disease Management," Information Systems Research, INFORMS, vol. 31(4), pages 1282-1300, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    2. Meade, Nigel & Islam, Towhidul, 2010. "Using copulas to model repeat purchase behaviour - An exploratory analysis via a case study," European Journal of Operational Research, Elsevier, vol. 200(3), pages 908-917, February.
    3. Yu-Kai Lin & Mingfeng Lin & Hsinchun Chen, 2019. "Do Electronic Health Records Affect Quality of Care? Evidence from the HITECH Act," Service Science, INFORMS, vol. 30(1), pages 306-318, March.
    4. Hemant K. Bhargava & Abhay Nath Mishra, 2014. "Electronic Medical Records and Physician Productivity: Evidence from Panel Data Analysis," Management Science, INFORMS, vol. 60(10), pages 2543-2562, October.
    5. C. Derrick Huang & Jahyun Goo & Ravi S. Behara & Ankur Agarwal, 2020. "Clinical Decision Support System for Managing COPD-Related Readmission Risk," Information Systems Frontiers, Springer, vol. 22(3), pages 735-747, June.
    6. Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.
    7. Yong-Woo Lee, 2013. "Testing for the Presence of Moral Hazard Using the Regulatory Reform in the Car Insurance Market: Case of Korea," The Japanese Economic Review, Japanese Economic Association, vol. 64(3), pages 414-429, September.
    8. Ari Bronsoler & John Van Reenen & Joseph Doyle, 2022. "The Impact of Health Information and Communication Technology on Clinical Quality, Productivity, and Workers," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 23-46, August.
    9. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    10. Jeongwen Chiang & Ching-Fan Chung & Emily Cremers, 2001. "Promotions and the pattern of grocery shopping time," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(7), pages 801-819.
    11. Ari Bronsoler & Joseph J. Doyle Jr. & John Van Reenen, 2021. "The Impact of Healthcare IT on Clinical Quality, Productivity and Workers," NBER Working Papers 29218, National Bureau of Economic Research, Inc.
    12. Park, Chang Hee & Yoon, Tae Jung, 2022. "The dark side of up-selling promotions: Evidence from an analysis of cross-brand purchase behavior☆," Journal of Retailing, Elsevier, vol. 98(4), pages 647-666.
    13. Helmut Farbmacher & Peter Ihle & Ingrid Schubert & Joachim Winter & Amelie Wuppermann, 2017. "Heterogeneous Effects of a Nonlinear Price Schedule for Outpatient Care," Health Economics, John Wiley & Sons, Ltd., vol. 26(10), pages 1234-1248, October.
    14. Ramkumar Janakiraman & Eunho Park & Emre M. Demirezen & Subodha Kumar, 2023. "The Effects of Health Information Exchange Access on Healthcare Quality and Efficiency: An Empirical Investigation," Management Science, INFORMS, vol. 69(2), pages 791-811, February.
    15. Schweidel, David A. & Fader, Peter S., 2009. "Dynamic changepoints revisited: An evolving process model of new product sales," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 119-124.
    16. Brad N. Greenwood & Kartik K. Ganju & Corey M. Angst, 2019. "How Does the Implementation of Enterprise Information Systems Affect a Professional’s Mobility? An Empirical Study," Information Systems Research, INFORMS, vol. 30(2), pages 563-594, June.
    17. Moreira S & Pita Barros P, 2009. "Double coverage and demand for health care: Evidence from quantile regression," Health, Econometrics and Data Group (HEDG) Working Papers 09/21, HEDG, c/o Department of Economics, University of York.
    18. Partha Deb & Pravin K. Trivedi, 2012. "Empirical Models of Health Care Use," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 14, Edward Elgar Publishing.
    19. Maria Elena Bontempi & Jan Ditzen, 2023. "GMM-lev estimation and individual heterogeneity: Monte Carlo evidence and empirical applications," Papers 2312.00399, arXiv.org, revised Dec 2023.
    20. Sam Ransbotham & Eric M. Overby & Michael C. Jernigan, 2021. "Electronic Trace Data and Legal Outcomes: The Effect of Electronic Medical Records on Malpractice Claim Resolution Time," Management Science, INFORMS, vol. 67(7), pages 4341-4361, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:26:y:2015:i:1:p:19-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.