IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v26y2009i2p119-124.html
   My bibliography  Save this article

Dynamic changepoints revisited: An evolving process model of new product sales

Author

Listed:
  • Schweidel, David A.
  • Fader, Peter S.

Abstract

This paper posits a new framework to model the trial of and repeat purchasing of a new product. While much research has examined underlying shifts in consumer purchasing patterns, the typical assumption has been that the underlying purchasing process remains the same although the purchasing rate may change over time. Motivated by Fader, Hardie, and Huang's development of a dynamic changepoint model [Fader, P. S., Hardie, B. G. S., & Huang, C. -Y. (2004). A Dynamic Changepoint Model for New Product Sales Forecasting. Marketing Science, 23 (1), 50–65], we consider an evolving process as consumers gain more experience with a new product.

Suggested Citation

  • Schweidel, David A. & Fader, Peter S., 2009. "Dynamic changepoints revisited: An evolving process model of new product sales," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 119-124.
  • Handle: RePEc:eee:ijrema:v:26:y:2009:i:2:p:119-124
    DOI: 10.1016/j.ijresmar.2008.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811609000263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2008.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abel P. Jeuland & Frank M. Bass & Gordon P. Wright, 1980. "A Multibrand Stochastic Model Compounding Heterogeneous Erlang Timing and Multinomial Choice Processes," Operations Research, INFORMS, vol. 28(2), pages 255-277, April.
    2. West, Patricia M & Brown, Christina L & Hoch, Stephen J, 1996. "Consumption Vocabulary and Preference Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 23(2), pages 120-135, September.
    3. Barbara E. Kahn & Donald G. Morrison, 1989. "A Note on ‘Random’ Purchasing: Additional Insights from Dunn, Reader and Wrigley," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(1), pages 111-114, March.
    4. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    5. Jerome Herniter, 1971. "A Probablistic Market Model of Purchase Timing and Brand Selection," Management Science, INFORMS, vol. 18(4-Part-II), pages 102-113, December.
    6. Peter S. Fader & Bruce G. S. Hardie & Chun-Yao Huang, 2004. "A Dynamic Changepoint Model for New Product Sales Forecasting," Marketing Science, INFORMS, vol. 23(1), pages 50-65, October.
    7. Bruce G. S. Hardie & Peter S. Fader & Robert Zeithammer, 2003. "Forecasting new product trial in a controlled test market environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 391-410.
    8. Sunil Gupta & Donald G. Morrison, 1991. "Estimating Heterogeneity in Consumers' Purchase Rates," Marketing Science, INFORMS, vol. 10(3), pages 264-269.
    9. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    10. Sha Yang & Gerg M. Allenby & Geraldine Fennel, 2002. "Modeling Variation in Brand Preference: The Roles of Objective Environment and Motivating Conditions," Marketing Science, INFORMS, vol. 21(1), pages 14-31, May.
    11. Meyer, Robert J, 1987. "The Learning of Multiattribute Judgment Policies," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(2), pages 155-173, September.
    12. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    2. Yanwen Wang & Chunhua Wu & Ting Zhu, 2019. "Mobile Hailing Technology and Taxi Driving Behaviors," Marketing Science, INFORMS, vol. 38(5), pages 734-755, September.
    3. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    4. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2014. "Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data," Marketing Science, INFORMS, vol. 33(2), pages 188-205, March.
    5. David A. Schweidel & Eric T. Bradlow & Peter S. Fader, 2011. "Portfolio Dynamics for Customers of a Multiservice Provider," Management Science, INFORMS, vol. 57(3), pages 471-486, March.
    6. Holtrop, Niels & Wieringa, Jaap E., 2023. "Timing customer reactivation initiatives," International Journal of Research in Marketing, Elsevier, vol. 40(3), pages 570-589.
    7. Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter S. Fader & Bruce G. S. Hardie & Chun-Yao Huang, 2004. "A Dynamic Changepoint Model for New Product Sales Forecasting," Marketing Science, INFORMS, vol. 23(1), pages 50-65, October.
    2. Meade, Nigel & Islam, Towhidul, 2010. "Using copulas to model repeat purchase behaviour - An exploratory analysis via a case study," European Journal of Operational Research, Elsevier, vol. 200(3), pages 908-917, February.
    3. Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.
    4. Teck-Hua Ho & Young-Hoon Park & Yong-Pin Zhou, 2006. "Incorporating Satisfaction into Customer Value Analysis: Optimal Investment in Lifetime Value," Marketing Science, INFORMS, vol. 25(3), pages 260-277, 05-06.
    5. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    6. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    7. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    8. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    9. Indranil Bardhan & Jeong-ha (Cath) Oh & Zhiqiang (Eric) Zheng & Kirk Kirksey, 2015. "Predictive Analytics for Readmission of Patients with Congestive Heart Failure," Information Systems Research, INFORMS, vol. 26(1), pages 19-39, March.
    10. Jonathan Z. Zhang & Chun-Wei Chang, 2021. "Consumer dynamics: theories, methods, and emerging directions," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 166-196, January.
    11. Juha Karvanen & Ari Rantanen & Lasse Luoma, 2014. "Survey data and Bayesian analysis: a cost-efficient way to estimate customer equity," Quantitative Marketing and Economics (QME), Springer, vol. 12(3), pages 305-329, September.
    12. Fader, Peter S. & Hardie, Bruce G.S., 2009. "Probability Models for Customer-Base Analysis," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 61-69.
    13. Holtrop, Niels & Wieringa, Jaap E., 2023. "Timing customer reactivation initiatives," International Journal of Research in Marketing, Elsevier, vol. 40(3), pages 570-589.
    14. Bogomolova, Svetlana & Anesbury, Zachary & Lockshin, Larry & Kapulski, Natasha & Bogomolov, Tim, 2019. "Exploring the incidence and antecedents of buying an FMCG brand and UPC for the first time," Journal of Retailing and Consumer Services, Elsevier, vol. 46(C), pages 121-129.
    15. van Oest, Rutger & Knox, George, 2011. "Extending the BG/NBD: A simple model of purchases and complaints," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 30-37.
    16. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    17. Angelovska, Nina, 2021. "Analysis Of Customer Activity, The Importance Of Timing For Effective Marketing Actions: Case Of Group Buying Site, Grouper," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 12(2), pages 156-170.
    18. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    19. Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
    20. Bruce G. S. Hardie & Peter S. Fader & Robert Zeithammer, 2003. "Forecasting new product trial in a controlled test market environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 391-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:26:y:2009:i:2:p:119-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.