IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v58y1991i2p277-297..html
   My bibliography  Save this article

Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations

Author

Listed:
  • Manuel Arellano
  • Stephen Bond

Abstract

This paper presents specification tests that are applicable after estimating a dynamic model from panel data by the generalized method of moments (GMM), and studies the practical performance of these procedures using both generated and real data. Our GMM estimator optimally exploits all the linear moment restrictions that follow from the assumption of no serial correlation in the errors, in an equation which contains individual effects, lagged dependent variables and no strictly exogenous variables. We propose a test of serial correlation based on the GMM residuals and compare this with Sargan tests of over-identifying restrictions and Hausman specification tests.

Suggested Citation

  • Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
  • Handle: RePEc:oup:restud:v:58:y:1991:i:2:p:277-297.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2307/2297968
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:58:y:1991:i:2:p:277-297.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.