IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v44y2014i4p411-427.html
   My bibliography  Save this article

Fixed-Cycle Smoothed Production Improves Lean Performance for Make-to-Stock Manufacturing

Author

Listed:
  • Peter M. Bernegger

    (Eastman Kodak Company, Rochester, New York 14652)

  • Scott Webster

    (W. P. Carey School of Business, Arizona State University, Tempe, Arizona 85287)

Abstract

Eastman Kodak Company is a well-known imaging and printing company that has been practicing lean manufacturing in its production and distribution operations for many years. Kodak manufactures a number of products with sufficient demand flow and volume relative to lot size so that its finishing operations are repetitive. For these products, it applies a production smoothing policy known as heijunka. Kodak’s supply chain model also requires finished goods inventory to ensure an immediate and reliable supply to customers. Appropriate inventory and production control policies are needed to satisfy stochastic demand at a qualified fill rate and to set the cycle time per unit to replenish inventory at a level rate of supply. The lean production control process Kodak implemented initially was an elementary system of action limits prescribed by lean consultants. This system was difficult to interpret and performed erratically. Kodak replaced it with a new system based on operations research and statistical process control techniques, which analytically model the inventory and production control policies for stochastic demand and level supply. The new method improves operational control of lean manufacturing for a make-to-stock application that is realized in production schedule stability, product availability, and lower operating costs.

Suggested Citation

  • Peter M. Bernegger & Scott Webster, 2014. "Fixed-Cycle Smoothed Production Improves Lean Performance for Make-to-Stock Manufacturing," Interfaces, INFORMS, vol. 44(4), pages 411-427, August.
  • Handle: RePEc:inm:orinte:v:44:y:2014:i:4:p:411-427
    DOI: 10.1287/inte.2014.0750
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2014.0750
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2014.0750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Stephen C. Graves, 1999. "Addendum to "A Single-Item Inventory Model for a Nonstationary Demand Process"," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 174-174.
    3. Wallace J. Hopp & Mark L. Spearman, 2004. "To Pull or Not to Pull: What Is the Question?," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 133-148, August.
    4. Chiang, Chi, 2007. "Optimal control policy for a standing order inventory system," European Journal of Operational Research, Elsevier, vol. 182(2), pages 695-703, October.
    5. Matthew Rosenshine & Duncan Obee, 1976. "Analysis of a Standing Order Inventory System with Emergency Orders," Operations Research, INFORMS, vol. 24(6), pages 1143-1155, December.
    6. Scott Webster & Z. Kevin Weng, 2001. "Improving Repetitive Manufacturing Systems: Model and Insights," Operations Research, INFORMS, vol. 49(1), pages 99-106, February.
    7. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    8. Jos A. C. Bokhorst & Jannes Slomp, 2010. "Lean Production Control at a High-Variety, Low-Volume Parts Manufacturer," Interfaces, INFORMS, vol. 40(4), pages 303-312, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabiane Letícia Lizarelli & Jiju Antony & José Carlos Toledo, 2020. "Statistical thinking and its impact on operational performance in manufacturing companies: an empirical study," Annals of Operations Research, Springer, vol. 295(2), pages 923-950, December.
    2. Shi, Wen & Leng, Kaijun & Van Nieuwenhuyse, Inneke & Liu, Yucui & Chen, Xiaohong, 2020. "Vehicle recalls performance in an emerging market: Evidence from the comparison between China and U.S," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 290-307.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    3. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    4. Arts, Joachim & Kiesmüller, Gudrun P., 2013. "Analysis of a two-echelon inventory system with two supply modes," European Journal of Operational Research, Elsevier, vol. 225(2), pages 263-272.
    5. Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Empirical safety stock estimation based on kernel and GARCH models," Omega, Elsevier, vol. 84(C), pages 199-211.
    6. Chandra, Charu & Grabis, Janis, 2005. "Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand," European Journal of Operational Research, Elsevier, vol. 166(2), pages 337-350, October.
    7. Svoboda, Josef & Minner, Stefan & Yao, Man, 2021. "Typology and literature review on multiple supplier inventory control models," European Journal of Operational Research, Elsevier, vol. 293(1), pages 1-23.
    8. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
    9. Li Chen & Wei Luo & Kevin Shang, 2017. "Measuring the Bullwhip Effect: Discrepancy and Alignment Between Information and Material Flows," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 36-51, February.
    10. Sarah M. Ryan, 2003. "Capacity expansion with lead times and autocorrelated random demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(2), pages 167-183, March.
    11. Lee, Yun Shin, 2014. "Management of a periodic-review inventory system using Bayesian model averaging when new marketing efforts are made," International Journal of Production Economics, Elsevier, vol. 158(C), pages 278-289.
    12. Stephen C. Graves & Sean P. Willems, 2008. "Strategic Inventory Placement in Supply Chains: Nonstationary Demand," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 278-287, March.
    13. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    14. Sillanpää, Ville & Liesiö, Juuso & Käki, Anssi, 2021. "Procurement decisions over multiple periods under piecewise-linear shortage costs and fixed capacity commitments," Omega, Elsevier, vol. 100(C).
    15. M M Ali & J E Boylan, 2011. "Feasibility principles for Downstream Demand Inference in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 474-482, March.
    16. Urban, Timothy L., 2005. "A periodic-review model with serially-correlated, inventory-level-dependent demand," International Journal of Production Economics, Elsevier, vol. 95(3), pages 287-295, March.
    17. Emilio Carrizosa & Alba V. Olivares-Nadal & Pepa Ramírez-Cobo, 2020. "Embedding the production policy in location-allocation decisions," 4OR, Springer, vol. 18(3), pages 357-380, September.
    18. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    19. Jalali, Hamed & Menezes, Mozart B.C., 2024. "Product portfolio adjustments and the bullwhip effect: The impact of product introduction and retirement," European Journal of Operational Research, Elsevier, vol. 318(1), pages 87-99.
    20. Zotteri, Giulio, 2013. "An empirical investigation on causes and effects of the Bullwhip-effect: Evidence from the personal care sector," International Journal of Production Economics, Elsevier, vol. 143(2), pages 489-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:44:y:2014:i:4:p:411-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.