IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i4p1085-1099.html
   My bibliography  Save this article

INAR implementation of newsvendor model for serially dependent demand counts

Author

Listed:
  • Layth C. Alwan
  • Christian H. Weiß

Abstract

The classic newsvendor model was developed under the assumption that period-to-period demand is independent over time. In real-life applications, the notion of independent demand is often challenged. In this paper, we propose a dynamic implementation of the newsvendor model based on a class of integer-valued autoregressive (INAR) models when facing correlated discrete demand. Motivated by application, we consider INAR models with underlying Poisson error innovations and with underlying negative-binomial error innovations to accommodate overdispersion scenarios. We numerically compare our proposal with the standard newsvendor solution and with a standard autoregressive-based newsvendor solution. Our results show that an appropriately specified INAR-based newsvendor solution not only outperforms the standard case but also the approximating forecasting approaches. Moreover, even in the presence of autocorrelation, the use of the standard autoregressive model as an approximating approach can lead to increased costs over and above the standard implementation of the newsvendor model based on no forecasting.

Suggested Citation

  • Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:4:p:1085-1099
    DOI: 10.1080/00207543.2016.1218565
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1218565
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1218565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    2. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    3. Stephen C. Graves & Sean P. Willems, 2000. "Optimizing Strategic Safety Stock Placement in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 2(1), pages 68-83, June.
    4. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    5. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    6. Nesim Erkip & Warren H. Hausman & Steven Nahmias, 1990. "Optimal Centralized Ordering Policies in Multi-Echelon Inventory Systems with Correlated Demands," Management Science, INFORMS, vol. 36(3), pages 381-392, March.
    7. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    8. Hau L. Lee, Seungjin Whang, 2000. "Information sharing in a supply chain," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 1(1), pages 79-93.
    9. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    10. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    11. Qin, Yan & Wang, Ruoxuan & Vakharia, Asoo J. & Chen, Yuwen & Seref, Michelle M.H., 2011. "The newsvendor problem: Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 213(2), pages 361-374, September.
    12. Frank Chen & Jennifer K. Ryan & David Simchi‐Levi, 2000. "The impact of exponential smoothing forecasts on the bullwhip effect," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(4), pages 269-286, June.
    13. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    14. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    15. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    16. Stephen C. Graves, 1999. "Addendum to "A Single-Item Inventory Model for a Nonstationary Demand Process"," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 174-174.
    17. Srinivasan Raghunathan, 2001. "Information Sharing in a Supply Chain: A Note on its Value when Demand Is Nonstationary," Management Science, INFORMS, vol. 47(4), pages 605-610, April.
    18. G. D. Johnson & H. E. Thompson, 1975. "Optimality of Myopic Inventory Policies for Certain Dependent Demand Processes," Management Science, INFORMS, vol. 21(11), pages 1303-1307, July.
    19. R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
    20. Mansour Aghababaei Jazi & Geoff Jones & Chin-Diew Lai, 2012. "First-order integer valued AR processes with zero inflated poisson innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(6), pages 954-963, November.
    21. Mohammadipour, Maryam & Boylan, John E., 2012. "Forecast horizon aggregation in integer autoregressive moving average (INARMA) models," Omega, Elsevier, vol. 40(6), pages 703-712.
    22. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    23. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    24. Gérard P. Cachon & Marshall Fisher, 2000. "Supply Chain Inventory Management and the Value of Shared Information," Management Science, INFORMS, vol. 46(8), pages 1032-1048, August.
    25. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    26. Fotopoulos, Stergios & Wang, Min-Chiang & Rao, S. Subba, 1988. "Safety stock determination with correlated demands and arbitrary lead times," European Journal of Operational Research, Elsevier, vol. 35(2), pages 172-181, May.
    27. Marmorstein, Howard & Zinn, Walter, 1993. "A conditional effect of autocorrelated demand on safety stock determination," European Journal of Operational Research, Elsevier, vol. 68(1), pages 139-142, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    2. Rostami-Tabar, Bahman & Disney, Stephen M., 2023. "On the order-up-to policy with intermittent integer demand and logically consistent forecasts," International Journal of Production Economics, Elsevier, vol. 257(C).
    3. Annika Homburg & Christian H. Weiß & Gabriel Frahm & Layth C. Alwan & Rainer Göb, 2021. "Analysis and Forecasting of Risk in Count Processes," JRFM, MDPI, vol. 14(4), pages 1-25, April.
    4. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2021. "A performance analysis of prediction intervals for count time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 603-625, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    2. Agrawal, Sunil & Sengupta, Raghu Nandan & Shanker, Kripa, 2009. "Impact of information sharing and lead time on bullwhip effect and on-hand inventory," European Journal of Operational Research, Elsevier, vol. 192(2), pages 576-593, January.
    3. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    4. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    5. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    6. M M Ali & J E Boylan, 2011. "Feasibility principles for Downstream Demand Inference in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 474-482, March.
    7. Junhai Ma & Jing Zhang & Liqing Zhu, 2018. "Study of the Bullwhip Effect under Various Forecasting Methods in Electronics Supply Chain with Dual Retailers considering Market Share," Complexity, Hindawi, vol. 2018, pages 1-19, January.
    8. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio & Boylan, John E., 2020. "The impact of demand parameter uncertainty on the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 283(1), pages 94-107.
    9. Zhang, Xiaolong, 2007. "Inventory control under temporal demand heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 182(1), pages 127-144, October.
    10. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    11. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    12. Jalali, Hamed & Menezes, Mozart B.C., 2024. "Product portfolio adjustments and the bullwhip effect: The impact of product introduction and retirement," European Journal of Operational Research, Elsevier, vol. 318(1), pages 87-99.
    13. Hosoda, Takamichi & Disney, Stephen M., 2009. "Impact of market demand mis-specification on a two-level supply chain," International Journal of Production Economics, Elsevier, vol. 121(2), pages 739-751, October.
    14. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    15. Bivin, David, 2013. "Production chains and aggregate output volatility," International Journal of Production Economics, Elsevier, vol. 145(2), pages 807-816.
    16. Nagaraja, Chaitra H. & McElroy, Tucker, 2018. "The multivariate bullwhip effect," European Journal of Operational Research, Elsevier, vol. 267(1), pages 96-106.
    17. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    18. Rostami-Tabar, Bahman & Disney, Stephen M., 2023. "On the order-up-to policy with intermittent integer demand and logically consistent forecasts," International Journal of Production Economics, Elsevier, vol. 257(C).
    19. Tliche, Y. & Taghipour, A. & Canel-Depitre, B., 2019. "Downstream Demand Inference in decentralized supply chains," European Journal of Operational Research, Elsevier, vol. 274(1), pages 65-77.
    20. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:4:p:1085-1099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.